This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elements of the free module are set functions. (Contributed by Stefan O'Rear, 3-Feb-2015) (Proof shortened by AV, 21-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmbasmap.n | ⊢ 𝑁 = ( Base ‘ 𝑅 ) | ||
| frlmbasmap.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| Assertion | frlmbasmap | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ ( 𝑁 ↑m 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmbasmap.n | ⊢ 𝑁 = ( Base ‘ 𝑅 ) | |
| 3 | frlmbasmap.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 4 | simpr | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 5 | 1 3 | frlmrcl | ⊢ ( 𝑋 ∈ 𝐵 → 𝑅 ∈ V ) |
| 6 | simpl | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝐼 ∈ 𝑊 ) | |
| 7 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 8 | 1 2 7 3 | frlmelbas | ⊢ ( ( 𝑅 ∈ V ∧ 𝐼 ∈ 𝑊 ) → ( 𝑋 ∈ 𝐵 ↔ ( 𝑋 ∈ ( 𝑁 ↑m 𝐼 ) ∧ 𝑋 finSupp ( 0g ‘ 𝑅 ) ) ) ) |
| 9 | 5 6 8 | syl2an2 | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐵 ↔ ( 𝑋 ∈ ( 𝑁 ↑m 𝐼 ) ∧ 𝑋 finSupp ( 0g ‘ 𝑅 ) ) ) ) |
| 10 | 4 9 | mpbid | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ ( 𝑁 ↑m 𝐼 ) ∧ 𝑋 finSupp ( 0g ‘ 𝑅 ) ) ) |
| 11 | 10 | simpld | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ ( 𝑁 ↑m 𝐼 ) ) |