This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt , some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvmpov.1 | ⊢ ( 𝑥 = 𝑧 → 𝐶 = 𝐸 ) | |
| cbvmpov.2 | ⊢ ( 𝑦 = 𝑤 → 𝐸 = 𝐷 ) | ||
| Assertion | cbvmpov | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑧 ∈ 𝐴 , 𝑤 ∈ 𝐵 ↦ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvmpov.1 | ⊢ ( 𝑥 = 𝑧 → 𝐶 = 𝐸 ) | |
| 2 | cbvmpov.2 | ⊢ ( 𝑦 = 𝑤 → 𝐸 = 𝐷 ) | |
| 3 | eleq1w | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 4 | eleq1w | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵 ) ) | |
| 5 | 3 4 | bi2anan9 | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ) |
| 6 | 1 2 | sylan9eq | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝐶 = 𝐷 ) |
| 7 | 6 | eqeq2d | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑣 = 𝐶 ↔ 𝑣 = 𝐷 ) ) |
| 8 | 5 7 | anbi12d | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) ↔ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑣 = 𝐷 ) ) ) |
| 9 | 8 | cbvoprab12v | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑣 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) } = { 〈 〈 𝑧 , 𝑤 〉 , 𝑣 〉 ∣ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑣 = 𝐷 ) } |
| 10 | df-mpo | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑣 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) } | |
| 11 | df-mpo | ⊢ ( 𝑧 ∈ 𝐴 , 𝑤 ∈ 𝐵 ↦ 𝐷 ) = { 〈 〈 𝑧 , 𝑤 〉 , 𝑣 〉 ∣ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑣 = 𝐷 ) } | |
| 12 | 9 10 11 | 3eqtr4i | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑧 ∈ 𝐴 , 𝑤 ∈ 𝐵 ↦ 𝐷 ) |