This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Coordinates of a scalar multiple with respect to a basis in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmvscaval.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmvscaval.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| frlmvscaval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| frlmvscaval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| frlmvscaval.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| frlmvscaval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| frlmvscaval.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) | ||
| frlmvscaval.v | ⊢ ∙ = ( ·𝑠 ‘ 𝑌 ) | ||
| frlmvscaval.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | frlmvscaval | ⊢ ( 𝜑 → ( ( 𝐴 ∙ 𝑋 ) ‘ 𝐽 ) = ( 𝐴 · ( 𝑋 ‘ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmvscaval.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmvscaval.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | frlmvscaval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | frlmvscaval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | frlmvscaval.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 6 | frlmvscaval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | frlmvscaval.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) | |
| 8 | frlmvscaval.v | ⊢ ∙ = ( ·𝑠 ‘ 𝑌 ) | |
| 9 | frlmvscaval.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 10 | 1 2 3 4 5 6 8 9 | frlmvscafval | ⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) = ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ) |
| 11 | 10 | fveq1d | ⊢ ( 𝜑 → ( ( 𝐴 ∙ 𝑋 ) ‘ 𝐽 ) = ( ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ‘ 𝐽 ) ) |
| 12 | fnconstg | ⊢ ( 𝐴 ∈ 𝐾 → ( 𝐼 × { 𝐴 } ) Fn 𝐼 ) | |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → ( 𝐼 × { 𝐴 } ) Fn 𝐼 ) |
| 14 | 1 3 2 | frlmbasf | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 : 𝐼 ⟶ 𝐾 ) |
| 15 | 4 6 14 | syl2anc | ⊢ ( 𝜑 → 𝑋 : 𝐼 ⟶ 𝐾 ) |
| 16 | 15 | ffnd | ⊢ ( 𝜑 → 𝑋 Fn 𝐼 ) |
| 17 | fnfvof | ⊢ ( ( ( ( 𝐼 × { 𝐴 } ) Fn 𝐼 ∧ 𝑋 Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) ) → ( ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ‘ 𝐽 ) = ( ( ( 𝐼 × { 𝐴 } ) ‘ 𝐽 ) · ( 𝑋 ‘ 𝐽 ) ) ) | |
| 18 | 13 16 4 7 17 | syl22anc | ⊢ ( 𝜑 → ( ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ‘ 𝐽 ) = ( ( ( 𝐼 × { 𝐴 } ) ‘ 𝐽 ) · ( 𝑋 ‘ 𝐽 ) ) ) |
| 19 | fvconst2g | ⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐽 ∈ 𝐼 ) → ( ( 𝐼 × { 𝐴 } ) ‘ 𝐽 ) = 𝐴 ) | |
| 20 | 5 7 19 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐼 × { 𝐴 } ) ‘ 𝐽 ) = 𝐴 ) |
| 21 | 20 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝐼 × { 𝐴 } ) ‘ 𝐽 ) · ( 𝑋 ‘ 𝐽 ) ) = ( 𝐴 · ( 𝑋 ‘ 𝐽 ) ) ) |
| 22 | 11 18 21 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 ∙ 𝑋 ) ‘ 𝐽 ) = ( 𝐴 · ( 𝑋 ‘ 𝐽 ) ) ) |