This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of a free module. (Contributed by Thierry Arnoux, 20-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmphl.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmphl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| frlmphl.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | frlmip | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ·𝑖 ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmphl.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmphl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | frlmphl.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( 𝑅 freeLMod 𝐼 ) = ( 𝑅 freeLMod 𝐼 ) | |
| 5 | eqid | ⊢ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) | |
| 6 | 4 5 | frlmpws | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝑅 freeLMod 𝐼 ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ) |
| 7 | 6 | ancoms | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 freeLMod 𝐼 ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ) |
| 8 | 2 | ressid | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
| 9 | eqidd | ⊢ ( 𝑅 ∈ 𝑉 → ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) | |
| 10 | 2 | eqimssi | ⊢ 𝐵 ⊆ ( Base ‘ 𝑅 ) |
| 11 | 10 | a1i | ⊢ ( 𝑅 ∈ 𝑉 → 𝐵 ⊆ ( Base ‘ 𝑅 ) ) |
| 12 | 9 11 | srasca | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↾s 𝐵 ) = ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) ) |
| 13 | 8 12 | eqtr3d | ⊢ ( 𝑅 ∈ 𝑉 → 𝑅 = ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) ) |
| 14 | 13 | oveq1d | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) = ( ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) = ( ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) |
| 16 | fvex | ⊢ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ∈ V | |
| 17 | rlmval | ⊢ ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) | |
| 18 | 2 | fveq2i | ⊢ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) |
| 19 | 17 18 | eqtr4i | ⊢ ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) |
| 20 | 19 | oveq1i | ⊢ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ↑s 𝐼 ) |
| 21 | eqid | ⊢ ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) = ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) | |
| 22 | 20 21 | pwsval | ⊢ ( ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ∈ V ∧ 𝐼 ∈ 𝑊 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) |
| 23 | 16 22 | mpan | ⊢ ( 𝐼 ∈ 𝑊 → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) |
| 25 | 15 24 | eqtr4d | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) |
| 26 | 1 | fveq2i | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) |
| 27 | 26 | a1i | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 28 | 25 27 | oveq12d | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ) |
| 29 | 7 28 | eqtr4d | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 freeLMod 𝐼 ) = ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) ) |
| 30 | 1 29 | eqtrid | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → 𝑌 = ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) ) |
| 31 | 30 | fveq2d | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( ·𝑖 ‘ 𝑌 ) = ( ·𝑖 ‘ ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) ) ) |
| 32 | fvex | ⊢ ( Base ‘ 𝑌 ) ∈ V | |
| 33 | eqid | ⊢ ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) = ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) | |
| 34 | eqid | ⊢ ( ·𝑖 ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( ·𝑖 ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) | |
| 35 | 33 34 | ressip | ⊢ ( ( Base ‘ 𝑌 ) ∈ V → ( ·𝑖 ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( ·𝑖 ‘ ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) ) ) |
| 36 | 32 35 | ax-mp | ⊢ ( ·𝑖 ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( ·𝑖 ‘ ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) ) |
| 37 | eqid | ⊢ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) = ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) | |
| 38 | simpr | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → 𝑅 ∈ 𝑉 ) | |
| 39 | snex | ⊢ { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ∈ V | |
| 40 | xpexg | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ∈ V ) → ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ∈ V ) | |
| 41 | 39 40 | mpan2 | ⊢ ( 𝐼 ∈ 𝑊 → ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ∈ V ) |
| 42 | 41 | adantr | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ∈ V ) |
| 43 | eqid | ⊢ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) | |
| 44 | 16 | snnz | ⊢ { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ≠ ∅ |
| 45 | dmxp | ⊢ ( { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ≠ ∅ → dom ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) = 𝐼 ) | |
| 46 | 44 45 | mp1i | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) = 𝐼 ) |
| 47 | 37 38 42 43 46 34 | prdsip | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( ·𝑖 ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( 𝑓 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) , 𝑔 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 48 | 37 38 42 43 46 | prdsbas | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ) |
| 49 | eqidd | ⊢ ( 𝑥 ∈ 𝐼 → ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) | |
| 50 | 10 | a1i | ⊢ ( 𝑥 ∈ 𝐼 → 𝐵 ⊆ ( Base ‘ 𝑅 ) ) |
| 51 | 49 50 | srabase | ⊢ ( 𝑥 ∈ 𝐼 → ( Base ‘ 𝑅 ) = ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) ) |
| 52 | 2 | a1i | ⊢ ( 𝑥 ∈ 𝐼 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 53 | 16 | fvconst2 | ⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) |
| 54 | 53 | fveq2d | ⊢ ( 𝑥 ∈ 𝐼 → ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) = ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) ) |
| 55 | 51 52 54 | 3eqtr4rd | ⊢ ( 𝑥 ∈ 𝐼 → ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) = 𝐵 ) |
| 56 | 55 | adantl | ⊢ ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) = 𝐵 ) |
| 57 | 56 | ixpeq2dva | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 𝐵 ) |
| 58 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 59 | ixpconstg | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝐵 ∈ V ) → X 𝑥 ∈ 𝐼 𝐵 = ( 𝐵 ↑m 𝐼 ) ) | |
| 60 | 58 59 | mpan2 | ⊢ ( 𝐼 ∈ 𝑊 → X 𝑥 ∈ 𝐼 𝐵 = ( 𝐵 ↑m 𝐼 ) ) |
| 61 | 60 | adantr | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → X 𝑥 ∈ 𝐼 𝐵 = ( 𝐵 ↑m 𝐼 ) ) |
| 62 | 48 57 61 | 3eqtrd | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( 𝐵 ↑m 𝐼 ) ) |
| 63 | 53 50 | sraip | ⊢ ( 𝑥 ∈ 𝐼 → ( .r ‘ 𝑅 ) = ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ) |
| 64 | 3 63 | eqtr2id | ⊢ ( 𝑥 ∈ 𝐼 → ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) = · ) |
| 65 | 64 | oveqd | ⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) |
| 66 | 65 | mpteq2ia | ⊢ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) |
| 67 | 66 | oveq2i | ⊢ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 68 | 67 | a1i | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 69 | 62 62 68 | mpoeq123dv | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑓 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) , 𝑔 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 70 | 47 69 | eqtrd | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( ·𝑖 ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 71 | 36 70 | eqtr3id | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( ·𝑖 ‘ ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) ) = ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 72 | 31 71 | eqtr2d | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ·𝑖 ‘ 𝑌 ) ) |