This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for frlmphl . (Contributed by AV, 21-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmphl.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmphl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| frlmphl.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| frlmphl.v | ⊢ 𝑉 = ( Base ‘ 𝑌 ) | ||
| frlmphl.j | ⊢ , = ( ·𝑖 ‘ 𝑌 ) | ||
| frlmphl.o | ⊢ 𝑂 = ( 0g ‘ 𝑌 ) | ||
| frlmphl.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| frlmphl.s | ⊢ ∗ = ( *𝑟 ‘ 𝑅 ) | ||
| frlmphl.f | ⊢ ( 𝜑 → 𝑅 ∈ Field ) | ||
| frlmphl.m | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ( 𝑔 , 𝑔 ) = 0 ) → 𝑔 = 𝑂 ) | ||
| frlmphl.u | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ∗ ‘ 𝑥 ) = 𝑥 ) | ||
| frlmphl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| Assertion | frlmphllem | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmphl.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmphl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | frlmphl.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | frlmphl.v | ⊢ 𝑉 = ( Base ‘ 𝑌 ) | |
| 5 | frlmphl.j | ⊢ , = ( ·𝑖 ‘ 𝑌 ) | |
| 6 | frlmphl.o | ⊢ 𝑂 = ( 0g ‘ 𝑌 ) | |
| 7 | frlmphl.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 8 | frlmphl.s | ⊢ ∗ = ( *𝑟 ‘ 𝑅 ) | |
| 9 | frlmphl.f | ⊢ ( 𝜑 → 𝑅 ∈ Field ) | |
| 10 | frlmphl.m | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ( 𝑔 , 𝑔 ) = 0 ) → 𝑔 = 𝑂 ) | |
| 11 | frlmphl.u | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ∗ ‘ 𝑥 ) = 𝑥 ) | |
| 12 | frlmphl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝐼 ∈ 𝑊 ) |
| 14 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑔 ∈ 𝑉 ) | |
| 15 | 1 2 4 | frlmbasmap | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑔 ∈ 𝑉 ) → 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 16 | 13 14 15 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 17 | elmapi | ⊢ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑔 : 𝐼 ⟶ 𝐵 ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑔 : 𝐼 ⟶ 𝐵 ) |
| 19 | 18 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑔 Fn 𝐼 ) |
| 20 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ℎ ∈ 𝑉 ) | |
| 21 | 1 2 4 | frlmbasmap | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ ℎ ∈ 𝑉 ) → ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 22 | 13 20 21 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 23 | elmapi | ⊢ ( ℎ ∈ ( 𝐵 ↑m 𝐼 ) → ℎ : 𝐼 ⟶ 𝐵 ) | |
| 24 | 22 23 | syl | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ℎ : 𝐼 ⟶ 𝐵 ) |
| 25 | 24 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ℎ Fn 𝐼 ) |
| 26 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 27 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) | |
| 28 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → ( ℎ ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) | |
| 29 | 19 25 13 13 26 27 28 | offval | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑔 ∘f · ℎ ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) |
| 30 | 29 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( ( 𝑔 ∘f · ℎ ) supp 0 ) = ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) supp 0 ) ) |
| 31 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑔 ∘f · ℎ ) ∈ V ) | |
| 32 | funmpt | ⊢ Fun ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) | |
| 33 | funeq | ⊢ ( ( 𝑔 ∘f · ℎ ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) → ( Fun ( 𝑔 ∘f · ℎ ) ↔ Fun ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ) | |
| 34 | 32 33 | mpbiri | ⊢ ( ( 𝑔 ∘f · ℎ ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) → Fun ( 𝑔 ∘f · ℎ ) ) |
| 35 | 29 34 | syl | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → Fun ( 𝑔 ∘f · ℎ ) ) |
| 36 | 1 7 4 | frlmbasfsupp | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑔 ∈ 𝑉 ) → 𝑔 finSupp 0 ) |
| 37 | 13 14 36 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑔 finSupp 0 ) |
| 38 | isfld | ⊢ ( 𝑅 ∈ Field ↔ ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) ) | |
| 39 | 9 38 | sylib | ⊢ ( 𝜑 → ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) ) |
| 40 | 39 | simpld | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
| 41 | drngring | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) | |
| 42 | 40 41 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 43 | 42 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑅 ∈ Ring ) |
| 44 | 2 7 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
| 45 | 43 44 | syl | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 0 ∈ 𝐵 ) |
| 46 | 2 3 7 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( 0 · 𝑥 ) = 0 ) |
| 47 | 43 46 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐵 ) → ( 0 · 𝑥 ) = 0 ) |
| 48 | 13 45 18 24 47 | suppofss1d | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( ( 𝑔 ∘f · ℎ ) supp 0 ) ⊆ ( 𝑔 supp 0 ) ) |
| 49 | fsuppsssupp | ⊢ ( ( ( ( 𝑔 ∘f · ℎ ) ∈ V ∧ Fun ( 𝑔 ∘f · ℎ ) ) ∧ ( 𝑔 finSupp 0 ∧ ( ( 𝑔 ∘f · ℎ ) supp 0 ) ⊆ ( 𝑔 supp 0 ) ) ) → ( 𝑔 ∘f · ℎ ) finSupp 0 ) | |
| 50 | 49 | fsuppimpd | ⊢ ( ( ( ( 𝑔 ∘f · ℎ ) ∈ V ∧ Fun ( 𝑔 ∘f · ℎ ) ) ∧ ( 𝑔 finSupp 0 ∧ ( ( 𝑔 ∘f · ℎ ) supp 0 ) ⊆ ( 𝑔 supp 0 ) ) ) → ( ( 𝑔 ∘f · ℎ ) supp 0 ) ∈ Fin ) |
| 51 | 31 35 37 48 50 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( ( 𝑔 ∘f · ℎ ) supp 0 ) ∈ Fin ) |
| 52 | 30 51 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) supp 0 ) ∈ Fin ) |
| 53 | 13 | mptexd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ∈ V ) |
| 54 | 45 | elexd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 0 ∈ V ) |
| 55 | funisfsupp | ⊢ ( ( Fun ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ∈ V ∧ 0 ∈ V ) → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) finSupp 0 ↔ ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) supp 0 ) ∈ Fin ) ) | |
| 56 | 32 53 54 55 | mp3an2i | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) finSupp 0 ↔ ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) supp 0 ) ∈ Fin ) ) |
| 57 | 52 56 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) finSupp 0 ) |