This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elements of the free module are finitely supported. (Contributed by Stefan O'Rear, 3-Feb-2015) (Revised by Thierry Arnoux, 21-Jun-2019) (Proof shortened by AV, 20-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmbasfsupp.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| frlmbasfsupp.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| Assertion | frlmbasfsupp | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmbasfsupp.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | frlmbasfsupp.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 4 | simpr | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 5 | 1 3 | frlmrcl | ⊢ ( 𝑋 ∈ 𝐵 → 𝑅 ∈ V ) |
| 6 | simpl | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝐼 ∈ 𝑊 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 8 | 1 7 2 3 | frlmelbas | ⊢ ( ( 𝑅 ∈ V ∧ 𝐼 ∈ 𝑊 ) → ( 𝑋 ∈ 𝐵 ↔ ( 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ 𝑋 finSupp 0 ) ) ) |
| 9 | 5 6 8 | syl2an2 | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐵 ↔ ( 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ 𝑋 finSupp 0 ) ) ) |
| 10 | 4 9 | mpbid | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ 𝑋 finSupp 0 ) ) |
| 11 | 10 | simprd | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 finSupp 0 ) |