This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of a free module. (Contributed by Thierry Arnoux, 21-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmphl.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmphl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| frlmphl.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| frlmphl.v | ⊢ 𝑉 = ( Base ‘ 𝑌 ) | ||
| frlmphl.j | ⊢ , = ( ·𝑖 ‘ 𝑌 ) | ||
| Assertion | frlmipval | ⊢ ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉 ) ) → ( 𝐹 , 𝐺 ) = ( 𝑅 Σg ( 𝐹 ∘f · 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmphl.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmphl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | frlmphl.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | frlmphl.v | ⊢ 𝑉 = ( Base ‘ 𝑌 ) | |
| 5 | frlmphl.j | ⊢ , = ( ·𝑖 ‘ 𝑌 ) | |
| 6 | 1 2 4 | frlmbasmap | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝐹 ∈ 𝑉 ) → 𝐹 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 7 | 6 | ad2ant2r | ⊢ ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉 ) ) → 𝐹 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 8 | elmapi | ⊢ ( 𝐹 ∈ ( 𝐵 ↑m 𝐼 ) → 𝐹 : 𝐼 ⟶ 𝐵 ) | |
| 9 | ffn | ⊢ ( 𝐹 : 𝐼 ⟶ 𝐵 → 𝐹 Fn 𝐼 ) | |
| 10 | 7 8 9 | 3syl | ⊢ ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉 ) ) → 𝐹 Fn 𝐼 ) |
| 11 | 1 2 4 | frlmbasmap | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝐺 ∈ 𝑉 ) → 𝐺 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 12 | 11 | ad2ant2rl | ⊢ ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉 ) ) → 𝐺 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 13 | elmapi | ⊢ ( 𝐺 ∈ ( 𝐵 ↑m 𝐼 ) → 𝐺 : 𝐼 ⟶ 𝐵 ) | |
| 14 | ffn | ⊢ ( 𝐺 : 𝐼 ⟶ 𝐵 → 𝐺 Fn 𝐼 ) | |
| 15 | 12 13 14 | 3syl | ⊢ ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉 ) ) → 𝐺 Fn 𝐼 ) |
| 16 | simpll | ⊢ ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉 ) ) → 𝐼 ∈ 𝑊 ) | |
| 17 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 18 | eqidd | ⊢ ( ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 19 | eqidd | ⊢ ( ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 20 | 10 15 16 16 17 18 19 | offval | ⊢ ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉 ) ) → ( 𝐹 ∘f · 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 21 | 20 | oveq2d | ⊢ ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉 ) ) → ( 𝑅 Σg ( 𝐹 ∘f · 𝐺 ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 22 | ovexd | ⊢ ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ V ) | |
| 23 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 24 | 23 | oveq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) |
| 25 | 24 | mpteq2dv | ⊢ ( 𝑓 = 𝐹 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 26 | 25 | oveq2d | ⊢ ( 𝑓 = 𝐹 → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 27 | fveq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 28 | 27 | oveq2d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝐹 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) |
| 29 | 28 | mpteq2dv | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 30 | 29 | oveq2d | ⊢ ( 𝑔 = 𝐺 → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 31 | eqid | ⊢ ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) | |
| 32 | 26 30 31 | ovmpog | ⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ V ) → ( 𝐹 ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) 𝐺 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 33 | 7 12 22 32 | syl3anc | ⊢ ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉 ) ) → ( 𝐹 ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) 𝐺 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 34 | 1 2 3 | frlmip | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) → ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ·𝑖 ‘ 𝑌 ) ) |
| 35 | 34 | adantr | ⊢ ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉 ) ) → ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ·𝑖 ‘ 𝑌 ) ) |
| 36 | 35 5 | eqtr4di | ⊢ ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉 ) ) → ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) = , ) |
| 37 | 36 | oveqd | ⊢ ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉 ) ) → ( 𝐹 ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) 𝐺 ) = ( 𝐹 , 𝐺 ) ) |
| 38 | 21 33 37 | 3eqtr2rd | ⊢ ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉 ) ) → ( 𝐹 , 𝐺 ) = ( 𝑅 Σg ( 𝐹 ∘f · 𝐺 ) ) ) |