This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutative ring is a star ring when the conjugate operation is the identity. (Contributed by Thierry Arnoux, 19-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idsrngd.k | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| idsrngd.c | ⊢ ∗ = ( *𝑟 ‘ 𝑅 ) | ||
| idsrngd.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| idsrngd.i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ∗ ‘ 𝑥 ) = 𝑥 ) | ||
| Assertion | idsrngd | ⊢ ( 𝜑 → 𝑅 ∈ *-Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idsrngd.k | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | idsrngd.c | ⊢ ∗ = ( *𝑟 ‘ 𝑅 ) | |
| 3 | idsrngd.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 4 | idsrngd.i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ∗ ‘ 𝑥 ) = 𝑥 ) | |
| 5 | 1 | a1i | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 6 | eqidd | ⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) ) | |
| 7 | eqidd | ⊢ ( 𝜑 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) ) | |
| 8 | 2 | a1i | ⊢ ( 𝜑 → ∗ = ( *𝑟 ‘ 𝑅 ) ) |
| 9 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 10 | 3 9 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 11 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 ) |
| 13 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) | |
| 14 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 = 𝑎 ) → 𝑥 = 𝑎 ) | |
| 15 | 14 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 = 𝑎 ) → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑎 ) ) |
| 16 | 15 14 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 = 𝑎 ) → ( ( ∗ ‘ 𝑥 ) = 𝑥 ↔ ( ∗ ‘ 𝑎 ) = 𝑎 ) ) |
| 17 | 13 16 | rspcdv | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 → ( ∗ ‘ 𝑎 ) = 𝑎 ) ) |
| 18 | 12 17 | mpd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∗ ‘ 𝑎 ) = 𝑎 ) |
| 19 | 18 13 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∗ ‘ 𝑎 ) ∈ 𝐵 ) |
| 20 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 ) |
| 21 | 20 | 3adant2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 ) |
| 22 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 23 | 10 22 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 24 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 25 | 1 24 | grpcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
| 26 | 23 25 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
| 27 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) → 𝑥 = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) | |
| 28 | 27 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ) |
| 29 | 28 27 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) → ( ( ∗ ‘ 𝑥 ) = 𝑥 ↔ ( ∗ ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ) |
| 30 | 26 29 | rspcdv | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 → ( ∗ ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ) |
| 31 | 21 30 | mpd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ∗ ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) |
| 32 | 18 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ∗ ‘ 𝑎 ) = 𝑎 ) |
| 33 | simpr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) | |
| 34 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 = 𝑏 ) → 𝑥 = 𝑏 ) | |
| 35 | 34 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 = 𝑏 ) → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑏 ) ) |
| 36 | 35 34 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 = 𝑏 ) → ( ( ∗ ‘ 𝑥 ) = 𝑥 ↔ ( ∗ ‘ 𝑏 ) = 𝑏 ) ) |
| 37 | 33 36 | rspcdv | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 → ( ∗ ‘ 𝑏 ) = 𝑏 ) ) |
| 38 | 20 37 | mpd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ∗ ‘ 𝑏 ) = 𝑏 ) |
| 39 | 38 | 3adant2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ∗ ‘ 𝑏 ) = 𝑏 ) |
| 40 | 32 39 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ( ∗ ‘ 𝑎 ) ( +g ‘ 𝑅 ) ( ∗ ‘ 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) |
| 41 | 31 40 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ∗ ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( ∗ ‘ 𝑎 ) ( +g ‘ 𝑅 ) ( ∗ ‘ 𝑏 ) ) ) |
| 42 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 43 | 1 42 | crngcom | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) = ( 𝑏 ( .r ‘ 𝑅 ) 𝑎 ) ) |
| 44 | 3 43 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) = ( 𝑏 ( .r ‘ 𝑅 ) 𝑎 ) ) |
| 45 | 1 42 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
| 46 | 10 45 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
| 47 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) → 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) | |
| 48 | 47 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) ) |
| 49 | 48 47 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) → ( ( ∗ ‘ 𝑥 ) = 𝑥 ↔ ( ∗ ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) ) |
| 50 | 46 49 | rspcdv | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 → ( ∗ ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) ) |
| 51 | 21 50 | mpd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ∗ ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) |
| 52 | 39 32 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ( ∗ ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ∗ ‘ 𝑎 ) ) = ( 𝑏 ( .r ‘ 𝑅 ) 𝑎 ) ) |
| 53 | 44 51 52 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ∗ ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) = ( ( ∗ ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ∗ ‘ 𝑎 ) ) ) |
| 54 | 18 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∗ ‘ ( ∗ ‘ 𝑎 ) ) = ( ∗ ‘ 𝑎 ) ) |
| 55 | 54 18 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∗ ‘ ( ∗ ‘ 𝑎 ) ) = 𝑎 ) |
| 56 | 5 6 7 8 10 19 41 53 55 | issrngd | ⊢ ( 𝜑 → 𝑅 ∈ *-Ring ) |