This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite ring sum multiplied by a constant. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 10-Jul-2019) Remove unused hypothesis. (Revised by SN, 7-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummulc1.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| gsummulc1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| gsummulc1.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| gsummulc1.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| gsummulc1.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsummulc1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| gsummulc1.x | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | ||
| gsummulc1.n | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) | ||
| Assertion | gsummulc2 | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝑌 · 𝑋 ) ) ) = ( 𝑌 · ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummulc1.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | gsummulc1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | gsummulc1.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | gsummulc1.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 5 | gsummulc1.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | gsummulc1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | gsummulc1.x | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
| 8 | gsummulc1.n | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) | |
| 9 | 4 | ringcmnd | ⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 10 | ringmnd | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) | |
| 11 | 4 10 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 12 | 1 3 | ringlghm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑌 · 𝑥 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 13 | 4 6 12 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑌 · 𝑥 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 14 | ghmmhm | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑌 · 𝑥 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑌 · 𝑥 ) ) ∈ ( 𝑅 MndHom 𝑅 ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑌 · 𝑥 ) ) ∈ ( 𝑅 MndHom 𝑅 ) ) |
| 16 | oveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑌 · 𝑥 ) = ( 𝑌 · 𝑋 ) ) | |
| 17 | oveq2 | ⊢ ( 𝑥 = ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) → ( 𝑌 · 𝑥 ) = ( 𝑌 · ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) ) | |
| 18 | 1 2 9 11 5 15 7 8 16 17 | gsummhm2 | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝑌 · 𝑋 ) ) ) = ( 𝑌 · ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) ) |