This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of scalars of a free module. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| Assertion | frlmsca | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑅 = ( Scalar ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | fvex | ⊢ ( ringLMod ‘ 𝑅 ) ∈ V | |
| 3 | eqid | ⊢ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) | |
| 4 | eqid | ⊢ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 5 | 3 4 | pwssca | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ V ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 6 | 2 5 | mpan | ⊢ ( 𝐼 ∈ 𝑊 → ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 8 | fvex | ⊢ ( Base ‘ 𝐹 ) ∈ V | |
| 9 | eqid | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) | |
| 10 | eqid | ⊢ ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) | |
| 11 | 9 10 | resssca | ⊢ ( ( Base ‘ 𝐹 ) ∈ V → ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( Scalar ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 12 | 8 11 | ax-mp | ⊢ ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( Scalar ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) ) |
| 13 | 7 12 | eqtrdi | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 14 | rlmsca | ⊢ ( 𝑅 ∈ 𝑉 → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 16 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 17 | 1 16 | frlmpws | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐹 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) ) |
| 18 | 17 | fveq2d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ 𝐹 ) = ( Scalar ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 19 | 13 15 18 | 3eqtr4d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑅 = ( Scalar ‘ 𝐹 ) ) |