This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by Stefan O'Rear, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmplusgval.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmplusgval.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| frlmplusgval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | ||
| frlmplusgval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| frlmplusgval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| frlmplusgval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | ||
| frlmplusgval.a | ⊢ + = ( +g ‘ 𝑅 ) | ||
| frlmplusgval.p | ⊢ ✚ = ( +g ‘ 𝑌 ) | ||
| Assertion | frlmplusgval | ⊢ ( 𝜑 → ( 𝐹 ✚ 𝐺 ) = ( 𝐹 ∘f + 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmplusgval.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmplusgval.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | frlmplusgval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | |
| 4 | frlmplusgval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | frlmplusgval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 6 | frlmplusgval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | |
| 7 | frlmplusgval.a | ⊢ + = ( +g ‘ 𝑅 ) | |
| 8 | frlmplusgval.p | ⊢ ✚ = ( +g ‘ 𝑌 ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 10 | 1 9 | frlmpws | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑌 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝑌 ) ) ) |
| 11 | 3 4 10 | syl2anc | ⊢ ( 𝜑 → 𝑌 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝑌 ) ) ) |
| 12 | 11 | fveq2d | ⊢ ( 𝜑 → ( +g ‘ 𝑌 ) = ( +g ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝑌 ) ) ) ) |
| 13 | fvex | ⊢ ( Base ‘ 𝑌 ) ∈ V | |
| 14 | eqid | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝑌 ) ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝑌 ) ) | |
| 15 | eqid | ⊢ ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) | |
| 16 | 14 15 | ressplusg | ⊢ ( ( Base ‘ 𝑌 ) ∈ V → ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( +g ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝑌 ) ) ) ) |
| 17 | 13 16 | ax-mp | ⊢ ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( +g ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝑌 ) ) ) |
| 18 | 12 8 17 | 3eqtr4g | ⊢ ( 𝜑 → ✚ = ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 19 | 18 | oveqd | ⊢ ( 𝜑 → ( 𝐹 ✚ 𝐺 ) = ( 𝐹 ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) 𝐺 ) ) |
| 20 | eqid | ⊢ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) | |
| 21 | eqid | ⊢ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) | |
| 22 | fvexd | ⊢ ( 𝜑 → ( ringLMod ‘ 𝑅 ) ∈ V ) | |
| 23 | 1 2 | frlmpws | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑌 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) |
| 24 | 3 4 23 | syl2anc | ⊢ ( 𝜑 → 𝑌 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) |
| 25 | 24 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) ) |
| 26 | 2 25 | eqtrid | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) ) |
| 27 | eqid | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) | |
| 28 | 27 21 | ressbasss | ⊢ ( Base ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) ⊆ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) |
| 29 | 26 28 | eqsstrdi | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 30 | 29 5 | sseldd | ⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 31 | 29 6 | sseldd | ⊢ ( 𝜑 → 𝐺 ∈ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 32 | rlmplusg | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 33 | 7 32 | eqtri | ⊢ + = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) |
| 34 | 20 21 22 4 30 31 33 15 | pwsplusgval | ⊢ ( 𝜑 → ( 𝐹 ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) 𝐺 ) = ( 𝐹 ∘f + 𝐺 ) ) |
| 35 | 19 34 | eqtrd | ⊢ ( 𝜑 → ( 𝐹 ✚ 𝐺 ) = ( 𝐹 ∘f + 𝐺 ) ) |