This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The free module is a module. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| Assertion | frlmlmod | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | 1 | frlmval | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 = ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 3 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐼 ∈ 𝑊 ) | |
| 4 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝑅 ∈ Ring ) | |
| 5 | rlmlmod | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 7 | fconst6g | ⊢ ( ( ringLMod ‘ 𝑅 ) ∈ LMod → ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) : 𝐼 ⟶ LMod ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) : 𝐼 ⟶ LMod ) |
| 9 | fvex | ⊢ ( ringLMod ‘ 𝑅 ) ∈ V | |
| 10 | 9 | fvconst2 | ⊢ ( 𝑖 ∈ 𝐼 → ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ‘ 𝑖 ) = ( ringLMod ‘ 𝑅 ) ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ‘ 𝑖 ) = ( ringLMod ‘ 𝑅 ) ) |
| 12 | 11 | fveq2d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑖 ∈ 𝐼 ) → ( Scalar ‘ ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ‘ 𝑖 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 13 | rlmsca | ⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) | |
| 14 | 13 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑖 ∈ 𝐼 ) → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 15 | 12 14 | eqtr4d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑖 ∈ 𝐼 ) → ( Scalar ‘ ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ‘ 𝑖 ) ) = 𝑅 ) |
| 16 | eqid | ⊢ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) = ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) | |
| 17 | 3 4 8 15 16 | dsmmlmod | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ∈ LMod ) |
| 18 | 2 17 | eqeltrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ LMod ) |