This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The neighborhoods of a nonempty set is a filter. Example 2 of BourbakiTop1 p. I.36. (Contributed by FL, 18-Sep-2007) (Revised by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | neifil | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Fil ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 3 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐽 ∈ Top ) |
| 5 | simpr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ 𝑋 ) | |
| 6 | 5 2 | sseqtrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 7 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 8 | 7 | neiuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ∪ 𝐽 = ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 9 | 4 6 8 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ∪ 𝐽 = ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 10 | 2 9 | eqtrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑋 = ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 11 | eqimss2 | ⊢ ( 𝑋 = ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 13 | sspwuni | ⊢ ( ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝒫 𝑋 ↔ ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) | |
| 14 | 12 13 | sylibr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝒫 𝑋 ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝒫 𝑋 ) |
| 16 | 0nnei | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ≠ ∅ ) → ¬ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) | |
| 17 | 3 16 | sylan | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ≠ ∅ ) → ¬ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 18 | 17 | 3adant2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ¬ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 19 | 7 | tpnei | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ⊆ ∪ 𝐽 ↔ ∪ 𝐽 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 20 | 19 | biimpa | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ∪ 𝐽 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 21 | 4 6 20 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ∪ 𝐽 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 22 | 2 21 | eqeltrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 23 | 22 | 3adant3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 24 | 15 18 23 | 3jca | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ( ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 25 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) | |
| 26 | 4 | ad2antrr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝐽 ∈ Top ) |
| 27 | simprl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) | |
| 28 | simprr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ⊆ 𝑥 ) | |
| 29 | simplr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ⊆ 𝑋 ) | |
| 30 | 2 | ad2antrr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑋 = ∪ 𝐽 ) |
| 31 | 29 30 | sseqtrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ⊆ ∪ 𝐽 ) |
| 32 | 7 | ssnei2 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑦 ⊆ 𝑥 ∧ 𝑥 ⊆ ∪ 𝐽 ) ) → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 33 | 26 27 28 31 32 | syl22anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 34 | 33 | rexlimdvaa | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 35 | 25 34 | sylan2 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → ( ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 36 | 35 | ralrimiva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 37 | 36 | 3adant3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 38 | innei | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) | |
| 39 | 38 | 3expib | ⊢ ( 𝐽 ∈ Top → ( ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 40 | 3 39 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 41 | 40 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ( ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 42 | 41 | ralrimivv | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ∀ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ( 𝑥 ∩ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 43 | isfil2 | ⊢ ( ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Fil ‘ 𝑋 ) ↔ ( ( ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ( 𝑥 ∩ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) | |
| 44 | 24 37 42 43 | syl3anbrc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Fil ‘ 𝑋 ) ) |