This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finer filter has fewer cluster points. (Contributed by Jeff Hankins, 11-Nov-2009) (Revised by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fclsss2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝐽 fClus 𝐺 ) ⊆ ( 𝐽 fClus 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ) → 𝐹 ⊆ 𝐺 ) | |
| 2 | ssralv | ⊢ ( 𝐹 ⊆ 𝐺 → ( ∀ 𝑠 ∈ 𝐺 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → ∀ 𝑠 ∈ 𝐹 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ) → ( ∀ 𝑠 ∈ 𝐺 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → ∀ 𝑠 ∈ 𝐹 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 4 | simpl1 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 5 | fclstopon | ⊢ ( 𝑥 ∈ ( 𝐽 fClus 𝐺 ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ) | |
| 6 | 5 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ) |
| 7 | 4 6 | mpbid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ) → 𝐺 ∈ ( Fil ‘ 𝑋 ) ) |
| 8 | isfcls2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ↔ ∀ 𝑠 ∈ 𝐺 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) | |
| 9 | 4 7 8 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ↔ ∀ 𝑠 ∈ 𝐺 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 10 | simpl2 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 11 | isfcls2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ↔ ∀ 𝑠 ∈ 𝐹 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) | |
| 12 | 4 10 11 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ↔ ∀ 𝑠 ∈ 𝐹 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 13 | 3 9 12 | 3imtr4d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐺 ) ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐺 ) → 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
| 14 | 13 | ex | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐺 ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐺 ) → 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) ) |
| 15 | 14 | pm2.43d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐺 ) → 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
| 16 | 15 | ssrdv | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝐽 fClus 𝐺 ) ⊆ ( 𝐽 fClus 𝐹 ) ) |