This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Jeff Hankins, 11-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fclsneii | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐹 ) → ( 𝑁 ∩ 𝑆 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐹 ) → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) | |
| 2 | fclstop | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐽 ∈ Top ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐹 ) → 𝐽 ∈ Top ) |
| 4 | simp2 | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐹 ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | |
| 5 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 6 | 5 | neii1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑁 ⊆ ∪ 𝐽 ) |
| 7 | 3 4 6 | syl2anc | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐹 ) → 𝑁 ⊆ ∪ 𝐽 ) |
| 8 | 5 | ntrss2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ⊆ 𝑁 ) |
| 9 | 3 7 8 | syl2anc | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐹 ) → ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ⊆ 𝑁 ) |
| 10 | 9 | ssrind | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐹 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ∩ 𝑆 ) ⊆ ( 𝑁 ∩ 𝑆 ) ) |
| 11 | 5 | ntropn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ∈ 𝐽 ) |
| 12 | 3 7 11 | syl2anc | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐹 ) → ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ∈ 𝐽 ) |
| 13 | 5 | fclselbas | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐴 ∈ ∪ 𝐽 ) |
| 14 | 1 13 | syl | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐹 ) → 𝐴 ∈ ∪ 𝐽 ) |
| 15 | 14 | snssd | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐹 ) → { 𝐴 } ⊆ ∪ 𝐽 ) |
| 16 | 5 | neiint | ⊢ ( ( 𝐽 ∈ Top ∧ { 𝐴 } ⊆ ∪ 𝐽 ∧ 𝑁 ⊆ ∪ 𝐽 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) ) |
| 17 | 3 15 7 16 | syl3anc | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐹 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) ) |
| 18 | 4 17 | mpbid | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐹 ) → { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) |
| 19 | snssg | ⊢ ( 𝐴 ∈ ∪ 𝐽 → ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) ) | |
| 20 | 14 19 | syl | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐹 ) → ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) ) |
| 21 | 18 20 | mpbird | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐹 ) → 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) |
| 22 | simp3 | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐹 ) → 𝑆 ∈ 𝐹 ) | |
| 23 | fclsopni | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ ( ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ∈ 𝐽 ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ∧ 𝑆 ∈ 𝐹 ) ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ∩ 𝑆 ) ≠ ∅ ) | |
| 24 | 1 12 21 22 23 | syl13anc | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐹 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ∩ 𝑆 ) ≠ ∅ ) |
| 25 | ssn0 | ⊢ ( ( ( ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ∩ 𝑆 ) ⊆ ( 𝑁 ∩ 𝑆 ) ∧ ( ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ∩ 𝑆 ) ≠ ∅ ) → ( 𝑁 ∩ 𝑆 ) ≠ ∅ ) | |
| 26 | 10 24 25 | syl2anc | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐹 ) → ( 𝑁 ∩ 𝑆 ) ≠ ∅ ) |