This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efgrelex . Show that L is an equivalence relation containing all direct extensions of a word, so is closed under .~ . (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | ||
| efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | ||
| efgcpbllem.1 | ⊢ 𝐿 = { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑊 ∧ ( ( 𝐴 ++ 𝑖 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑗 ) ++ 𝐵 ) ) } | ||
| Assertion | efgcpbllemb | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ∼ ⊆ 𝐿 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | |
| 7 | efgcpbllem.1 | ⊢ 𝐿 = { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑊 ∧ ( ( 𝐴 ++ 𝑖 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑗 ) ++ 𝐵 ) ) } | |
| 8 | 1 2 3 4 | efgval2 | ⊢ ∼ = ∩ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑓 ∈ 𝑊 ran ( 𝑇 ‘ 𝑓 ) ⊆ [ 𝑓 ] 𝑟 ) } |
| 9 | 7 | relopabiv | ⊢ Rel 𝐿 |
| 10 | 9 | a1i | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → Rel 𝐿 ) |
| 11 | 1 2 3 4 5 6 7 | efgcpbllema | ⊢ ( 𝑓 𝐿 𝑔 ↔ ( 𝑓 ∈ 𝑊 ∧ 𝑔 ∈ 𝑊 ∧ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑔 ) ++ 𝐵 ) ) ) |
| 12 | 11 | simp2bi | ⊢ ( 𝑓 𝐿 𝑔 → 𝑔 ∈ 𝑊 ) |
| 13 | 12 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 𝐿 𝑔 ) → 𝑔 ∈ 𝑊 ) |
| 14 | 11 | simp1bi | ⊢ ( 𝑓 𝐿 𝑔 → 𝑓 ∈ 𝑊 ) |
| 15 | 14 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 𝐿 𝑔 ) → 𝑓 ∈ 𝑊 ) |
| 16 | 1 2 | efger | ⊢ ∼ Er 𝑊 |
| 17 | 16 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 𝐿 𝑔 ) → ∼ Er 𝑊 ) |
| 18 | 11 | simp3bi | ⊢ ( 𝑓 𝐿 𝑔 → ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑔 ) ++ 𝐵 ) ) |
| 19 | 18 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 𝐿 𝑔 ) → ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑔 ) ++ 𝐵 ) ) |
| 20 | 17 19 | ersym | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 𝐿 𝑔 ) → ( ( 𝐴 ++ 𝑔 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) |
| 21 | 1 2 3 4 5 6 7 | efgcpbllema | ⊢ ( 𝑔 𝐿 𝑓 ↔ ( 𝑔 ∈ 𝑊 ∧ 𝑓 ∈ 𝑊 ∧ ( ( 𝐴 ++ 𝑔 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) |
| 22 | 13 15 20 21 | syl3anbrc | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 𝐿 𝑔 ) → 𝑔 𝐿 𝑓 ) |
| 23 | 14 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑓 𝐿 𝑔 ∧ 𝑔 𝐿 ℎ ) ) → 𝑓 ∈ 𝑊 ) |
| 24 | 1 2 3 4 5 6 7 | efgcpbllema | ⊢ ( 𝑔 𝐿 ℎ ↔ ( 𝑔 ∈ 𝑊 ∧ ℎ ∈ 𝑊 ∧ ( ( 𝐴 ++ 𝑔 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ ℎ ) ++ 𝐵 ) ) ) |
| 25 | 24 | simp2bi | ⊢ ( 𝑔 𝐿 ℎ → ℎ ∈ 𝑊 ) |
| 26 | 25 | ad2antll | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑓 𝐿 𝑔 ∧ 𝑔 𝐿 ℎ ) ) → ℎ ∈ 𝑊 ) |
| 27 | 16 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑓 𝐿 𝑔 ∧ 𝑔 𝐿 ℎ ) ) → ∼ Er 𝑊 ) |
| 28 | 18 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑓 𝐿 𝑔 ∧ 𝑔 𝐿 ℎ ) ) → ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑔 ) ++ 𝐵 ) ) |
| 29 | 24 | simp3bi | ⊢ ( 𝑔 𝐿 ℎ → ( ( 𝐴 ++ 𝑔 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ ℎ ) ++ 𝐵 ) ) |
| 30 | 29 | ad2antll | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑓 𝐿 𝑔 ∧ 𝑔 𝐿 ℎ ) ) → ( ( 𝐴 ++ 𝑔 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ ℎ ) ++ 𝐵 ) ) |
| 31 | 27 28 30 | ertrd | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑓 𝐿 𝑔 ∧ 𝑔 𝐿 ℎ ) ) → ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ ℎ ) ++ 𝐵 ) ) |
| 32 | 1 2 3 4 5 6 7 | efgcpbllema | ⊢ ( 𝑓 𝐿 ℎ ↔ ( 𝑓 ∈ 𝑊 ∧ ℎ ∈ 𝑊 ∧ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ ℎ ) ++ 𝐵 ) ) ) |
| 33 | 23 26 31 32 | syl3anbrc | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑓 𝐿 𝑔 ∧ 𝑔 𝐿 ℎ ) ) → 𝑓 𝐿 ℎ ) |
| 34 | 16 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) → ∼ Er 𝑊 ) |
| 35 | fviss | ⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) | |
| 36 | 1 35 | eqsstri | ⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
| 37 | simpll | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) → 𝐴 ∈ 𝑊 ) | |
| 38 | 36 37 | sselid | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) → 𝐴 ∈ Word ( 𝐼 × 2o ) ) |
| 39 | simpr | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) → 𝑓 ∈ 𝑊 ) | |
| 40 | 36 39 | sselid | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) → 𝑓 ∈ Word ( 𝐼 × 2o ) ) |
| 41 | ccatcl | ⊢ ( ( 𝐴 ∈ Word ( 𝐼 × 2o ) ∧ 𝑓 ∈ Word ( 𝐼 × 2o ) ) → ( 𝐴 ++ 𝑓 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 42 | 38 40 41 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) → ( 𝐴 ++ 𝑓 ) ∈ Word ( 𝐼 × 2o ) ) |
| 43 | simplr | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) → 𝐵 ∈ 𝑊 ) | |
| 44 | 36 43 | sselid | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) → 𝐵 ∈ Word ( 𝐼 × 2o ) ) |
| 45 | ccatcl | ⊢ ( ( ( 𝐴 ++ 𝑓 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝐵 ∈ Word ( 𝐼 × 2o ) ) → ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 46 | 42 44 45 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) → ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∈ Word ( 𝐼 × 2o ) ) |
| 47 | 1 | efgrcl | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
| 48 | 47 | simprd | ⊢ ( 𝐴 ∈ 𝑊 → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 49 | 48 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 50 | 46 49 | eleqtrrd | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) → ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∈ 𝑊 ) |
| 51 | 34 50 | erref | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) → ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) |
| 52 | 51 | ex | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑓 ∈ 𝑊 → ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) |
| 53 | 52 | pm4.71d | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑓 ∈ 𝑊 ↔ ( 𝑓 ∈ 𝑊 ∧ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) ) |
| 54 | 1 2 3 4 5 6 7 | efgcpbllema | ⊢ ( 𝑓 𝐿 𝑓 ↔ ( 𝑓 ∈ 𝑊 ∧ 𝑓 ∈ 𝑊 ∧ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) |
| 55 | df-3an | ⊢ ( ( 𝑓 ∈ 𝑊 ∧ 𝑓 ∈ 𝑊 ∧ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ↔ ( ( 𝑓 ∈ 𝑊 ∧ 𝑓 ∈ 𝑊 ) ∧ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) | |
| 56 | anidm | ⊢ ( ( 𝑓 ∈ 𝑊 ∧ 𝑓 ∈ 𝑊 ) ↔ 𝑓 ∈ 𝑊 ) | |
| 57 | 56 | anbi1i | ⊢ ( ( ( 𝑓 ∈ 𝑊 ∧ 𝑓 ∈ 𝑊 ) ∧ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ↔ ( 𝑓 ∈ 𝑊 ∧ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) |
| 58 | 54 55 57 | 3bitri | ⊢ ( 𝑓 𝐿 𝑓 ↔ ( 𝑓 ∈ 𝑊 ∧ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) |
| 59 | 53 58 | bitr4di | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑓 ∈ 𝑊 ↔ 𝑓 𝐿 𝑓 ) ) |
| 60 | 10 22 33 59 | iserd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → 𝐿 Er 𝑊 ) |
| 61 | 1 2 3 4 | efgtf | ⊢ ( 𝑓 ∈ 𝑊 → ( ( 𝑇 ‘ 𝑓 ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑓 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ∧ ( 𝑇 ‘ 𝑓 ) : ( ( 0 ... ( ♯ ‘ 𝑓 ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) ) |
| 62 | 61 | simprd | ⊢ ( 𝑓 ∈ 𝑊 → ( 𝑇 ‘ 𝑓 ) : ( ( 0 ... ( ♯ ‘ 𝑓 ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) |
| 63 | 62 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) → ( 𝑇 ‘ 𝑓 ) : ( ( 0 ... ( ♯ ‘ 𝑓 ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) |
| 64 | ffn | ⊢ ( ( 𝑇 ‘ 𝑓 ) : ( ( 0 ... ( ♯ ‘ 𝑓 ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 → ( 𝑇 ‘ 𝑓 ) Fn ( ( 0 ... ( ♯ ‘ 𝑓 ) ) × ( 𝐼 × 2o ) ) ) | |
| 65 | ovelrn | ⊢ ( ( 𝑇 ‘ 𝑓 ) Fn ( ( 0 ... ( ♯ ‘ 𝑓 ) ) × ( 𝐼 × 2o ) ) → ( 𝑎 ∈ ran ( 𝑇 ‘ 𝑓 ) ↔ ∃ 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∃ 𝑢 ∈ ( 𝐼 × 2o ) 𝑎 = ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) ) ) | |
| 66 | 63 64 65 | 3syl | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) → ( 𝑎 ∈ ran ( 𝑇 ‘ 𝑓 ) ↔ ∃ 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∃ 𝑢 ∈ ( 𝐼 × 2o ) 𝑎 = ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) ) ) |
| 67 | simplr | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → 𝑓 ∈ 𝑊 ) | |
| 68 | 62 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑇 ‘ 𝑓 ) : ( ( 0 ... ( ♯ ‘ 𝑓 ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) |
| 69 | simprl | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ) | |
| 70 | simprr | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → 𝑢 ∈ ( 𝐼 × 2o ) ) | |
| 71 | 68 69 70 | fovcdmd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) ∈ 𝑊 ) |
| 72 | 50 | adantr | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∈ 𝑊 ) |
| 73 | 37 | adantr | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → 𝐴 ∈ 𝑊 ) |
| 74 | 36 73 | sselid | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → 𝐴 ∈ Word ( 𝐼 × 2o ) ) |
| 75 | 40 | adantr | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → 𝑓 ∈ Word ( 𝐼 × 2o ) ) |
| 76 | pfxcl | ⊢ ( 𝑓 ∈ Word ( 𝐼 × 2o ) → ( 𝑓 prefix 𝑐 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 77 | 75 76 | syl | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑓 prefix 𝑐 ) ∈ Word ( 𝐼 × 2o ) ) |
| 78 | ccatcl | ⊢ ( ( 𝐴 ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑓 prefix 𝑐 ) ∈ Word ( 𝐼 × 2o ) ) → ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ∈ Word ( 𝐼 × 2o ) ) | |
| 79 | 74 77 78 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 80 | 3 | efgmf | ⊢ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) |
| 81 | 80 | ffvelcdmi | ⊢ ( 𝑢 ∈ ( 𝐼 × 2o ) → ( 𝑀 ‘ 𝑢 ) ∈ ( 𝐼 × 2o ) ) |
| 82 | 81 | ad2antll | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑀 ‘ 𝑢 ) ∈ ( 𝐼 × 2o ) ) |
| 83 | 70 82 | s2cld | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) |
| 84 | ccatcl | ⊢ ( ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ∈ Word ( 𝐼 × 2o ) ∧ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) → ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 85 | 79 83 84 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 86 | swrdcl | ⊢ ( 𝑓 ∈ Word ( 𝐼 × 2o ) → ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 87 | 75 86 | syl | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 88 | 44 | adantr | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → 𝐵 ∈ Word ( 𝐼 × 2o ) ) |
| 89 | ccatass | ⊢ ( ( ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝐵 ∈ Word ( 𝐼 × 2o ) ) → ( ( ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) ++ 𝐵 ) = ( ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ++ ( ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ++ 𝐵 ) ) ) | |
| 90 | 85 87 88 89 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) ++ 𝐵 ) = ( ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ++ ( ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ++ 𝐵 ) ) ) |
| 91 | ccatcl | ⊢ ( ( ( 𝑓 prefix 𝑐 ) ∈ Word ( 𝐼 × 2o ) ∧ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) → ( ( 𝑓 prefix 𝑐 ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 92 | 77 83 91 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑓 prefix 𝑐 ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 93 | ccatass | ⊢ ( ( 𝐴 ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝑓 prefix 𝑐 ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) → ( ( 𝐴 ++ ( ( 𝑓 prefix 𝑐 ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) = ( 𝐴 ++ ( ( ( 𝑓 prefix 𝑐 ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) ) ) | |
| 94 | 74 92 87 93 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝐴 ++ ( ( 𝑓 prefix 𝑐 ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) = ( 𝐴 ++ ( ( ( 𝑓 prefix 𝑐 ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) ) ) |
| 95 | ccatass | ⊢ ( ( 𝐴 ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑓 prefix 𝑐 ) ∈ Word ( 𝐼 × 2o ) ∧ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) → ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) = ( 𝐴 ++ ( ( 𝑓 prefix 𝑐 ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ) ) | |
| 96 | 74 77 83 95 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) = ( 𝐴 ++ ( ( 𝑓 prefix 𝑐 ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ) ) |
| 97 | 96 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) = ( ( 𝐴 ++ ( ( 𝑓 prefix 𝑐 ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) ) |
| 98 | 1 2 3 4 | efgtval | ⊢ ( ( 𝑓 ∈ 𝑊 ∧ 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) → ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) = ( 𝑓 splice 〈 𝑐 , 𝑐 , 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 〉 ) ) |
| 99 | 67 69 70 98 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) = ( 𝑓 splice 〈 𝑐 , 𝑐 , 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 〉 ) ) |
| 100 | splval | ⊢ ( ( 𝑓 ∈ 𝑊 ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) ) → ( 𝑓 splice 〈 𝑐 , 𝑐 , 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 〉 ) = ( ( ( 𝑓 prefix 𝑐 ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) ) | |
| 101 | 67 69 69 83 100 | syl13anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑓 splice 〈 𝑐 , 𝑐 , 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 〉 ) = ( ( ( 𝑓 prefix 𝑐 ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) ) |
| 102 | 99 101 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) = ( ( ( 𝑓 prefix 𝑐 ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) ) |
| 103 | 102 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( 𝐴 ++ ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) ) = ( 𝐴 ++ ( ( ( 𝑓 prefix 𝑐 ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) ) ) |
| 104 | 94 97 103 | 3eqtr4rd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( 𝐴 ++ ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) ) = ( ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) ) |
| 105 | 104 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝐴 ++ ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) ) ++ 𝐵 ) = ( ( ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) ++ 𝐵 ) ) |
| 106 | lencl | ⊢ ( 𝐴 ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 107 | 74 106 | syl | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 108 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 109 | 107 108 | eleqtrdi | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 110 | elfznn0 | ⊢ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) → 𝑐 ∈ ℕ0 ) | |
| 111 | 110 | ad2antrl | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → 𝑐 ∈ ℕ0 ) |
| 112 | uzaddcl | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑐 ∈ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ∈ ( ℤ≥ ‘ 0 ) ) | |
| 113 | 109 111 112 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 114 | 42 | adantr | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( 𝐴 ++ 𝑓 ) ∈ Word ( 𝐼 × 2o ) ) |
| 115 | ccatlen | ⊢ ( ( ( 𝐴 ++ 𝑓 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝐵 ∈ Word ( 𝐼 × 2o ) ) → ( ♯ ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) = ( ( ♯ ‘ ( 𝐴 ++ 𝑓 ) ) + ( ♯ ‘ 𝐵 ) ) ) | |
| 116 | 114 88 115 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) = ( ( ♯ ‘ ( 𝐴 ++ 𝑓 ) ) + ( ♯ ‘ 𝐵 ) ) ) |
| 117 | ccatlen | ⊢ ( ( 𝐴 ∈ Word ( 𝐼 × 2o ) ∧ 𝑓 ∈ Word ( 𝐼 × 2o ) ) → ( ♯ ‘ ( 𝐴 ++ 𝑓 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝑓 ) ) ) | |
| 118 | 74 75 117 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ ( 𝐴 ++ 𝑓 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝑓 ) ) ) |
| 119 | elfzuz3 | ⊢ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) → ( ♯ ‘ 𝑓 ) ∈ ( ℤ≥ ‘ 𝑐 ) ) | |
| 120 | 119 | ad2antrl | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑓 ) ∈ ( ℤ≥ ‘ 𝑐 ) ) |
| 121 | 107 | nn0zd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
| 122 | eluzadd | ⊢ ( ( ( ♯ ‘ 𝑓 ) ∈ ( ℤ≥ ‘ 𝑐 ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℤ ) → ( ( ♯ ‘ 𝑓 ) + ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( 𝑐 + ( ♯ ‘ 𝐴 ) ) ) ) | |
| 123 | 120 121 122 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝑓 ) + ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( 𝑐 + ( ♯ ‘ 𝐴 ) ) ) ) |
| 124 | lencl | ⊢ ( 𝑓 ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ 𝑓 ) ∈ ℕ0 ) | |
| 125 | 75 124 | syl | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑓 ) ∈ ℕ0 ) |
| 126 | 125 | nn0cnd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑓 ) ∈ ℂ ) |
| 127 | 107 | nn0cnd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 128 | 126 127 | addcomd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝑓 ) + ( ♯ ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝑓 ) ) ) |
| 129 | 111 | nn0cnd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → 𝑐 ∈ ℂ ) |
| 130 | 129 127 | addcomd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑐 + ( ♯ ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ) |
| 131 | 130 | fveq2d | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ℤ≥ ‘ ( 𝑐 + ( ♯ ‘ 𝐴 ) ) ) = ( ℤ≥ ‘ ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ) ) |
| 132 | 123 128 131 | 3eltr3d | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝑓 ) ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ) ) |
| 133 | 118 132 | eqeltrd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ ( 𝐴 ++ 𝑓 ) ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ) ) |
| 134 | lencl | ⊢ ( 𝐵 ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 135 | 88 134 | syl | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 136 | uzaddcl | ⊢ ( ( ( ♯ ‘ ( 𝐴 ++ 𝑓 ) ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ) ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝐴 ++ 𝑓 ) ) + ( ♯ ‘ 𝐵 ) ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ) ) | |
| 137 | 133 135 136 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ ( 𝐴 ++ 𝑓 ) ) + ( ♯ ‘ 𝐵 ) ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ) ) |
| 138 | 116 137 | eqeltrd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ) ) |
| 139 | elfzuzb | ⊢ ( ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ∈ ( 0 ... ( ♯ ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) ↔ ( ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ) ) ) | |
| 140 | 113 138 139 | sylanbrc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ∈ ( 0 ... ( ♯ ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) ) |
| 141 | 1 2 3 4 | efgtval | ⊢ ( ( ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∈ 𝑊 ∧ ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ∈ ( 0 ... ( ♯ ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) → ( ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ( 𝑇 ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) 𝑢 ) = ( ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) splice 〈 ( ( ♯ ‘ 𝐴 ) + 𝑐 ) , ( ( ♯ ‘ 𝐴 ) + 𝑐 ) , 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 〉 ) ) |
| 142 | 72 140 70 141 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ( 𝑇 ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) 𝑢 ) = ( ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) splice 〈 ( ( ♯ ‘ 𝐴 ) + 𝑐 ) , ( ( ♯ ‘ 𝐴 ) + 𝑐 ) , 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 〉 ) ) |
| 143 | wrd0 | ⊢ ∅ ∈ Word ( 𝐼 × 2o ) | |
| 144 | 143 | a1i | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ∅ ∈ Word ( 𝐼 × 2o ) ) |
| 145 | ccatcl | ⊢ ( ( ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝐵 ∈ Word ( 𝐼 × 2o ) ) → ( ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ++ 𝐵 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 146 | 87 88 145 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ++ 𝐵 ) ∈ Word ( 𝐼 × 2o ) ) |
| 147 | ccatrid | ⊢ ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ ∅ ) = ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ) | |
| 148 | 79 147 | syl | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ ∅ ) = ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ) |
| 149 | 148 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ ∅ ) ++ ( ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ++ 𝐵 ) ) = ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ ( ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ++ 𝐵 ) ) ) |
| 150 | ccatass | ⊢ ( ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝐵 ∈ Word ( 𝐼 × 2o ) ) → ( ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) ++ 𝐵 ) = ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ ( ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ++ 𝐵 ) ) ) | |
| 151 | 79 87 88 150 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) ++ 𝐵 ) = ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ ( ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ++ 𝐵 ) ) ) |
| 152 | ccatass | ⊢ ( ( 𝐴 ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑓 prefix 𝑐 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) → ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) = ( 𝐴 ++ ( ( 𝑓 prefix 𝑐 ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) ) ) | |
| 153 | 74 77 87 152 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) = ( 𝐴 ++ ( ( 𝑓 prefix 𝑐 ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) ) ) |
| 154 | 125 108 | eleqtrdi | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑓 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 155 | eluzfz2 | ⊢ ( ( ♯ ‘ 𝑓 ) ∈ ( ℤ≥ ‘ 0 ) → ( ♯ ‘ 𝑓 ) ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ) | |
| 156 | 154 155 | syl | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑓 ) ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ) |
| 157 | ccatpfx | ⊢ ( ( 𝑓 ∈ Word ( 𝐼 × 2o ) ∧ 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ ( ♯ ‘ 𝑓 ) ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ) → ( ( 𝑓 prefix 𝑐 ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) = ( 𝑓 prefix ( ♯ ‘ 𝑓 ) ) ) | |
| 158 | 75 69 156 157 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑓 prefix 𝑐 ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) = ( 𝑓 prefix ( ♯ ‘ 𝑓 ) ) ) |
| 159 | pfxid | ⊢ ( 𝑓 ∈ Word ( 𝐼 × 2o ) → ( 𝑓 prefix ( ♯ ‘ 𝑓 ) ) = 𝑓 ) | |
| 160 | 75 159 | syl | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑓 prefix ( ♯ ‘ 𝑓 ) ) = 𝑓 ) |
| 161 | 158 160 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑓 prefix 𝑐 ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) = 𝑓 ) |
| 162 | 161 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( 𝐴 ++ ( ( 𝑓 prefix 𝑐 ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) ) = ( 𝐴 ++ 𝑓 ) ) |
| 163 | 153 162 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) = ( 𝐴 ++ 𝑓 ) ) |
| 164 | 163 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ) ++ 𝐵 ) = ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) |
| 165 | 149 151 164 | 3eqtr2rd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) = ( ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ ∅ ) ++ ( ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ++ 𝐵 ) ) ) |
| 166 | ccatlen | ⊢ ( ( 𝐴 ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑓 prefix 𝑐 ) ∈ Word ( 𝐼 × 2o ) ) → ( ♯ ‘ ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ( 𝑓 prefix 𝑐 ) ) ) ) | |
| 167 | 74 77 166 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ( 𝑓 prefix 𝑐 ) ) ) ) |
| 168 | pfxlen | ⊢ ( ( 𝑓 ∈ Word ( 𝐼 × 2o ) ∧ 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ) → ( ♯ ‘ ( 𝑓 prefix 𝑐 ) ) = 𝑐 ) | |
| 169 | 75 69 168 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ ( 𝑓 prefix 𝑐 ) ) = 𝑐 ) |
| 170 | 169 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ( 𝑓 prefix 𝑐 ) ) ) = ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ) |
| 171 | 167 170 | eqtr2d | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝐴 ) + 𝑐 ) = ( ♯ ‘ ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ) ) |
| 172 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 173 | 172 | oveq2i | ⊢ ( ( ( ♯ ‘ 𝐴 ) + 𝑐 ) + ( ♯ ‘ ∅ ) ) = ( ( ( ♯ ‘ 𝐴 ) + 𝑐 ) + 0 ) |
| 174 | 107 111 | nn0addcld | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ∈ ℕ0 ) |
| 175 | 174 | nn0cnd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ∈ ℂ ) |
| 176 | 175 | addridd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ( ♯ ‘ 𝐴 ) + 𝑐 ) + 0 ) = ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ) |
| 177 | 173 176 | eqtr2id | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝐴 ) + 𝑐 ) = ( ( ( ♯ ‘ 𝐴 ) + 𝑐 ) + ( ♯ ‘ ∅ ) ) ) |
| 178 | 79 144 146 83 165 171 177 | splval2 | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) splice 〈 ( ( ♯ ‘ 𝐴 ) + 𝑐 ) , ( ( ♯ ‘ 𝐴 ) + 𝑐 ) , 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 〉 ) = ( ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ++ ( ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ++ 𝐵 ) ) ) |
| 179 | 142 178 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ( 𝑇 ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) 𝑢 ) = ( ( ( 𝐴 ++ ( 𝑓 prefix 𝑐 ) ) ++ 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 ) ++ ( ( 𝑓 substr 〈 𝑐 , ( ♯ ‘ 𝑓 ) 〉 ) ++ 𝐵 ) ) ) |
| 180 | 90 105 179 | 3eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝐴 ++ ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) ) ++ 𝐵 ) = ( ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ( 𝑇 ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) 𝑢 ) ) |
| 181 | 1 2 3 4 | efgtf | ⊢ ( ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∈ 𝑊 → ( ( 𝑇 ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ∧ ( 𝑇 ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) : ( ( 0 ... ( ♯ ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) ) |
| 182 | 181 | simprd | ⊢ ( ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∈ 𝑊 → ( 𝑇 ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) : ( ( 0 ... ( ♯ ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) |
| 183 | ffn | ⊢ ( ( 𝑇 ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) : ( ( 0 ... ( ♯ ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 → ( 𝑇 ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) Fn ( ( 0 ... ( ♯ ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) × ( 𝐼 × 2o ) ) ) | |
| 184 | 72 182 183 | 3syl | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑇 ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) Fn ( ( 0 ... ( ♯ ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) × ( 𝐼 × 2o ) ) ) |
| 185 | fnovrn | ⊢ ( ( ( 𝑇 ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) Fn ( ( 0 ... ( ♯ ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) × ( 𝐼 × 2o ) ) ∧ ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ∈ ( 0 ... ( ♯ ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) → ( ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ( 𝑇 ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) 𝑢 ) ∈ ran ( 𝑇 ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) | |
| 186 | 184 140 70 185 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( ( ♯ ‘ 𝐴 ) + 𝑐 ) ( 𝑇 ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) 𝑢 ) ∈ ran ( 𝑇 ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) |
| 187 | 180 186 | eqeltrd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝐴 ++ ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) ) ++ 𝐵 ) ∈ ran ( 𝑇 ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) |
| 188 | 1 2 3 4 | efgi2 | ⊢ ( ( ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∈ 𝑊 ∧ ( ( 𝐴 ++ ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) ) ++ 𝐵 ) ∈ ran ( 𝑇 ‘ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ) ) → ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) ) ++ 𝐵 ) ) |
| 189 | 72 187 188 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) ) ++ 𝐵 ) ) |
| 190 | 1 2 3 4 5 6 7 | efgcpbllema | ⊢ ( 𝑓 𝐿 ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) ↔ ( 𝑓 ∈ 𝑊 ∧ ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) ∈ 𝑊 ∧ ( ( 𝐴 ++ 𝑓 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) ) ++ 𝐵 ) ) ) |
| 191 | 67 71 189 190 | syl3anbrc | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → 𝑓 𝐿 ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) ) |
| 192 | vex | ⊢ 𝑎 ∈ V | |
| 193 | vex | ⊢ 𝑓 ∈ V | |
| 194 | 192 193 | elec | ⊢ ( 𝑎 ∈ [ 𝑓 ] 𝐿 ↔ 𝑓 𝐿 𝑎 ) |
| 195 | breq2 | ⊢ ( 𝑎 = ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) → ( 𝑓 𝐿 𝑎 ↔ 𝑓 𝐿 ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) ) ) | |
| 196 | 194 195 | bitrid | ⊢ ( 𝑎 = ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) → ( 𝑎 ∈ [ 𝑓 ] 𝐿 ↔ 𝑓 𝐿 ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) ) ) |
| 197 | 191 196 | syl5ibrcom | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) ∧ ( 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∧ 𝑢 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑎 = ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) → 𝑎 ∈ [ 𝑓 ] 𝐿 ) ) |
| 198 | 197 | rexlimdvva | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) → ( ∃ 𝑐 ∈ ( 0 ... ( ♯ ‘ 𝑓 ) ) ∃ 𝑢 ∈ ( 𝐼 × 2o ) 𝑎 = ( 𝑐 ( 𝑇 ‘ 𝑓 ) 𝑢 ) → 𝑎 ∈ [ 𝑓 ] 𝐿 ) ) |
| 199 | 66 198 | sylbid | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) → ( 𝑎 ∈ ran ( 𝑇 ‘ 𝑓 ) → 𝑎 ∈ [ 𝑓 ] 𝐿 ) ) |
| 200 | 199 | ssrdv | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑓 ∈ 𝑊 ) → ran ( 𝑇 ‘ 𝑓 ) ⊆ [ 𝑓 ] 𝐿 ) |
| 201 | 200 | ralrimiva | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ∀ 𝑓 ∈ 𝑊 ran ( 𝑇 ‘ 𝑓 ) ⊆ [ 𝑓 ] 𝐿 ) |
| 202 | 1 | fvexi | ⊢ 𝑊 ∈ V |
| 203 | erex | ⊢ ( 𝐿 Er 𝑊 → ( 𝑊 ∈ V → 𝐿 ∈ V ) ) | |
| 204 | 60 202 203 | mpisyl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → 𝐿 ∈ V ) |
| 205 | ereq1 | ⊢ ( 𝑟 = 𝐿 → ( 𝑟 Er 𝑊 ↔ 𝐿 Er 𝑊 ) ) | |
| 206 | eceq2 | ⊢ ( 𝑟 = 𝐿 → [ 𝑓 ] 𝑟 = [ 𝑓 ] 𝐿 ) | |
| 207 | 206 | sseq2d | ⊢ ( 𝑟 = 𝐿 → ( ran ( 𝑇 ‘ 𝑓 ) ⊆ [ 𝑓 ] 𝑟 ↔ ran ( 𝑇 ‘ 𝑓 ) ⊆ [ 𝑓 ] 𝐿 ) ) |
| 208 | 207 | ralbidv | ⊢ ( 𝑟 = 𝐿 → ( ∀ 𝑓 ∈ 𝑊 ran ( 𝑇 ‘ 𝑓 ) ⊆ [ 𝑓 ] 𝑟 ↔ ∀ 𝑓 ∈ 𝑊 ran ( 𝑇 ‘ 𝑓 ) ⊆ [ 𝑓 ] 𝐿 ) ) |
| 209 | 205 208 | anbi12d | ⊢ ( 𝑟 = 𝐿 → ( ( 𝑟 Er 𝑊 ∧ ∀ 𝑓 ∈ 𝑊 ran ( 𝑇 ‘ 𝑓 ) ⊆ [ 𝑓 ] 𝑟 ) ↔ ( 𝐿 Er 𝑊 ∧ ∀ 𝑓 ∈ 𝑊 ran ( 𝑇 ‘ 𝑓 ) ⊆ [ 𝑓 ] 𝐿 ) ) ) |
| 210 | 209 | elabg | ⊢ ( 𝐿 ∈ V → ( 𝐿 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑓 ∈ 𝑊 ran ( 𝑇 ‘ 𝑓 ) ⊆ [ 𝑓 ] 𝑟 ) } ↔ ( 𝐿 Er 𝑊 ∧ ∀ 𝑓 ∈ 𝑊 ran ( 𝑇 ‘ 𝑓 ) ⊆ [ 𝑓 ] 𝐿 ) ) ) |
| 211 | 204 210 | syl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐿 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑓 ∈ 𝑊 ran ( 𝑇 ‘ 𝑓 ) ⊆ [ 𝑓 ] 𝑟 ) } ↔ ( 𝐿 Er 𝑊 ∧ ∀ 𝑓 ∈ 𝑊 ran ( 𝑇 ‘ 𝑓 ) ⊆ [ 𝑓 ] 𝐿 ) ) ) |
| 212 | 60 201 211 | mpbir2and | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → 𝐿 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑓 ∈ 𝑊 ran ( 𝑇 ‘ 𝑓 ) ⊆ [ 𝑓 ] 𝑟 ) } ) |
| 213 | intss1 | ⊢ ( 𝐿 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑓 ∈ 𝑊 ran ( 𝑇 ‘ 𝑓 ) ⊆ [ 𝑓 ] 𝑟 ) } → ∩ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑓 ∈ 𝑊 ran ( 𝑇 ‘ 𝑓 ) ⊆ [ 𝑓 ] 𝑟 ) } ⊆ 𝐿 ) | |
| 214 | 212 213 | syl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ∩ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑓 ∈ 𝑊 ran ( 𝑇 ‘ 𝑓 ) ⊆ [ 𝑓 ] 𝑟 ) } ⊆ 𝐿 ) |
| 215 | 8 214 | eqsstrid | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ∼ ⊆ 𝐿 ) |