This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ereq1 | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Er 𝐴 ↔ 𝑆 Er 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releq | ⊢ ( 𝑅 = 𝑆 → ( Rel 𝑅 ↔ Rel 𝑆 ) ) | |
| 2 | dmeq | ⊢ ( 𝑅 = 𝑆 → dom 𝑅 = dom 𝑆 ) | |
| 3 | 2 | eqeq1d | ⊢ ( 𝑅 = 𝑆 → ( dom 𝑅 = 𝐴 ↔ dom 𝑆 = 𝐴 ) ) |
| 4 | cnveq | ⊢ ( 𝑅 = 𝑆 → ◡ 𝑅 = ◡ 𝑆 ) | |
| 5 | coeq1 | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 ∘ 𝑅 ) = ( 𝑆 ∘ 𝑅 ) ) | |
| 6 | coeq2 | ⊢ ( 𝑅 = 𝑆 → ( 𝑆 ∘ 𝑅 ) = ( 𝑆 ∘ 𝑆 ) ) | |
| 7 | 5 6 | eqtrd | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 ∘ 𝑅 ) = ( 𝑆 ∘ 𝑆 ) ) |
| 8 | 4 7 | uneq12d | ⊢ ( 𝑅 = 𝑆 → ( ◡ 𝑅 ∪ ( 𝑅 ∘ 𝑅 ) ) = ( ◡ 𝑆 ∪ ( 𝑆 ∘ 𝑆 ) ) ) |
| 9 | 8 | sseq1d | ⊢ ( 𝑅 = 𝑆 → ( ( ◡ 𝑅 ∪ ( 𝑅 ∘ 𝑅 ) ) ⊆ 𝑅 ↔ ( ◡ 𝑆 ∪ ( 𝑆 ∘ 𝑆 ) ) ⊆ 𝑅 ) ) |
| 10 | sseq2 | ⊢ ( 𝑅 = 𝑆 → ( ( ◡ 𝑆 ∪ ( 𝑆 ∘ 𝑆 ) ) ⊆ 𝑅 ↔ ( ◡ 𝑆 ∪ ( 𝑆 ∘ 𝑆 ) ) ⊆ 𝑆 ) ) | |
| 11 | 9 10 | bitrd | ⊢ ( 𝑅 = 𝑆 → ( ( ◡ 𝑅 ∪ ( 𝑅 ∘ 𝑅 ) ) ⊆ 𝑅 ↔ ( ◡ 𝑆 ∪ ( 𝑆 ∘ 𝑆 ) ) ⊆ 𝑆 ) ) |
| 12 | 1 3 11 | 3anbi123d | ⊢ ( 𝑅 = 𝑆 → ( ( Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ ( ◡ 𝑅 ∪ ( 𝑅 ∘ 𝑅 ) ) ⊆ 𝑅 ) ↔ ( Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ ( ◡ 𝑆 ∪ ( 𝑆 ∘ 𝑆 ) ) ⊆ 𝑆 ) ) ) |
| 13 | df-er | ⊢ ( 𝑅 Er 𝐴 ↔ ( Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ ( ◡ 𝑅 ∪ ( 𝑅 ∘ 𝑅 ) ) ⊆ 𝑅 ) ) | |
| 14 | df-er | ⊢ ( 𝑆 Er 𝐴 ↔ ( Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ ( ◡ 𝑆 ∪ ( 𝑆 ∘ 𝑆 ) ) ⊆ 𝑆 ) ) | |
| 15 | 12 13 14 | 3bitr4g | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Er 𝐴 ↔ 𝑆 Er 𝐴 ) ) |