This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the substring replacement operator. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by AV, 11-May-2020) (Revised by AV, 15-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | splval | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-splice | ⊢ splice = ( 𝑠 ∈ V , 𝑏 ∈ V ↦ ( ( ( 𝑠 prefix ( 1st ‘ ( 1st ‘ 𝑏 ) ) ) ++ ( 2nd ‘ 𝑏 ) ) ++ ( 𝑠 substr 〈 ( 2nd ‘ ( 1st ‘ 𝑏 ) ) , ( ♯ ‘ 𝑠 ) 〉 ) ) ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) → splice = ( 𝑠 ∈ V , 𝑏 ∈ V ↦ ( ( ( 𝑠 prefix ( 1st ‘ ( 1st ‘ 𝑏 ) ) ) ++ ( 2nd ‘ 𝑏 ) ) ++ ( 𝑠 substr 〈 ( 2nd ‘ ( 1st ‘ 𝑏 ) ) , ( ♯ ‘ 𝑠 ) 〉 ) ) ) ) |
| 3 | simprl | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) ∧ ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) → 𝑠 = 𝑆 ) | |
| 4 | 2fveq3 | ⊢ ( 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 → ( 1st ‘ ( 1st ‘ 𝑏 ) ) = ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) → ( 1st ‘ ( 1st ‘ 𝑏 ) ) = ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) |
| 6 | ot1stg | ⊢ ( ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) → ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) = 𝐹 ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) → ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) = 𝐹 ) |
| 8 | 5 7 | sylan9eqr | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) ∧ ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) → ( 1st ‘ ( 1st ‘ 𝑏 ) ) = 𝐹 ) |
| 9 | 3 8 | oveq12d | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) ∧ ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) → ( 𝑠 prefix ( 1st ‘ ( 1st ‘ 𝑏 ) ) ) = ( 𝑆 prefix 𝐹 ) ) |
| 10 | fveq2 | ⊢ ( 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 → ( 2nd ‘ 𝑏 ) = ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) → ( 2nd ‘ 𝑏 ) = ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) |
| 12 | ot3rdg | ⊢ ( 𝑅 ∈ 𝑌 → ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) = 𝑅 ) | |
| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) → ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) = 𝑅 ) |
| 14 | 13 | adantl | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) → ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) = 𝑅 ) |
| 15 | 11 14 | sylan9eqr | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) ∧ ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) → ( 2nd ‘ 𝑏 ) = 𝑅 ) |
| 16 | 9 15 | oveq12d | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) ∧ ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) → ( ( 𝑠 prefix ( 1st ‘ ( 1st ‘ 𝑏 ) ) ) ++ ( 2nd ‘ 𝑏 ) ) = ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) |
| 17 | 2fveq3 | ⊢ ( 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 → ( 2nd ‘ ( 1st ‘ 𝑏 ) ) = ( 2nd ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) → ( 2nd ‘ ( 1st ‘ 𝑏 ) ) = ( 2nd ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) |
| 19 | ot2ndg | ⊢ ( ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) → ( 2nd ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) = 𝑇 ) | |
| 20 | 19 | adantl | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) → ( 2nd ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) = 𝑇 ) |
| 21 | 18 20 | sylan9eqr | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) ∧ ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) → ( 2nd ‘ ( 1st ‘ 𝑏 ) ) = 𝑇 ) |
| 22 | 3 | fveq2d | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) ∧ ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) → ( ♯ ‘ 𝑠 ) = ( ♯ ‘ 𝑆 ) ) |
| 23 | 21 22 | opeq12d | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) ∧ ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) → 〈 ( 2nd ‘ ( 1st ‘ 𝑏 ) ) , ( ♯ ‘ 𝑠 ) 〉 = 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) |
| 24 | 3 23 | oveq12d | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) ∧ ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) → ( 𝑠 substr 〈 ( 2nd ‘ ( 1st ‘ 𝑏 ) ) , ( ♯ ‘ 𝑠 ) 〉 ) = ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) |
| 25 | 16 24 | oveq12d | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) ∧ ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) → ( ( ( 𝑠 prefix ( 1st ‘ ( 1st ‘ 𝑏 ) ) ) ++ ( 2nd ‘ 𝑏 ) ) ++ ( 𝑠 substr 〈 ( 2nd ‘ ( 1st ‘ 𝑏 ) ) , ( ♯ ‘ 𝑠 ) 〉 ) ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| 26 | elex | ⊢ ( 𝑆 ∈ 𝑉 → 𝑆 ∈ V ) | |
| 27 | 26 | adantr | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) → 𝑆 ∈ V ) |
| 28 | otex | ⊢ 〈 𝐹 , 𝑇 , 𝑅 〉 ∈ V | |
| 29 | 28 | a1i | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) → 〈 𝐹 , 𝑇 , 𝑅 〉 ∈ V ) |
| 30 | ovexd | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) → ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ∈ V ) | |
| 31 | 2 25 27 29 30 | ovmpod | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |