This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efgval . (Contributed by Mario Carneiro, 1-Oct-2015) (Revised by Mario Carneiro, 27-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| Assertion | efgrcl | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | 2on0 | ⊢ 2o ≠ ∅ | |
| 3 | dmxp | ⊢ ( 2o ≠ ∅ → dom ( 𝐼 × 2o ) = 𝐼 ) | |
| 4 | 2 3 | ax-mp | ⊢ dom ( 𝐼 × 2o ) = 𝐼 |
| 5 | elfvex | ⊢ ( 𝐴 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) → Word ( 𝐼 × 2o ) ∈ V ) | |
| 6 | 5 1 | eleq2s | ⊢ ( 𝐴 ∈ 𝑊 → Word ( 𝐼 × 2o ) ∈ V ) |
| 7 | wrdexb | ⊢ ( ( 𝐼 × 2o ) ∈ V ↔ Word ( 𝐼 × 2o ) ∈ V ) | |
| 8 | 6 7 | sylibr | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝐼 × 2o ) ∈ V ) |
| 9 | 8 | dmexd | ⊢ ( 𝐴 ∈ 𝑊 → dom ( 𝐼 × 2o ) ∈ V ) |
| 10 | 4 9 | eqeltrrid | ⊢ ( 𝐴 ∈ 𝑊 → 𝐼 ∈ V ) |
| 11 | fvi | ⊢ ( Word ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) | |
| 12 | 6 11 | syl | ⊢ ( 𝐴 ∈ 𝑊 → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
| 13 | 1 12 | eqtrid | ⊢ ( 𝐴 ∈ 𝑊 → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 14 | 10 13 | jca | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |