This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two words A , B are related under the free group equivalence, then there exist two extension sequences a , b such that a ends at A , b ends at B , and a and B have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | ||
| efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | ||
| Assertion | efgrelex | ⊢ ( 𝐴 ∼ 𝐵 → ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝐵 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | |
| 7 | eqid | ⊢ { 〈 𝑖 , 𝑗 〉 ∣ ∃ 𝑐 ∈ ( ◡ 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( ◡ 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) } = { 〈 𝑖 , 𝑗 〉 ∣ ∃ 𝑐 ∈ ( ◡ 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( ◡ 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) } | |
| 8 | 1 2 3 4 5 6 7 | efgrelexlemb | ⊢ ∼ ⊆ { 〈 𝑖 , 𝑗 〉 ∣ ∃ 𝑐 ∈ ( ◡ 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( ◡ 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) } |
| 9 | 8 | ssbri | ⊢ ( 𝐴 ∼ 𝐵 → 𝐴 { 〈 𝑖 , 𝑗 〉 ∣ ∃ 𝑐 ∈ ( ◡ 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( ◡ 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) } 𝐵 ) |
| 10 | 1 2 3 4 5 6 7 | efgrelexlema | ⊢ ( 𝐴 { 〈 𝑖 , 𝑗 〉 ∣ ∃ 𝑐 ∈ ( ◡ 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( ◡ 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) } 𝐵 ↔ ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝐵 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) |
| 11 | 9 10 | sylib | ⊢ ( 𝐴 ∼ 𝐵 → ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝐵 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) |