This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Concatenation of a word by the empty word on the right. (Contributed by Stefan O'Rear, 15-Aug-2015) (Proof shortened by AV, 1-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatrid | ⊢ ( 𝑆 ∈ Word 𝐵 → ( 𝑆 ++ ∅ ) = 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrd0 | ⊢ ∅ ∈ Word 𝐵 | |
| 2 | ccatvalfn | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ ∅ ∈ Word 𝐵 ) → ( 𝑆 ++ ∅ ) Fn ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ ∅ ) ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝑆 ∈ Word 𝐵 → ( 𝑆 ++ ∅ ) Fn ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ ∅ ) ) ) ) |
| 4 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 5 | 4 | oveq2i | ⊢ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ ∅ ) ) = ( ( ♯ ‘ 𝑆 ) + 0 ) |
| 6 | lencl | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) | |
| 7 | 6 | nn0cnd | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
| 8 | 7 | addridd | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ( ♯ ‘ 𝑆 ) + 0 ) = ( ♯ ‘ 𝑆 ) ) |
| 9 | 5 8 | eqtr2id | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) = ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ ∅ ) ) ) |
| 10 | 9 | oveq2d | ⊢ ( 𝑆 ∈ Word 𝐵 → ( 0 ..^ ( ♯ ‘ 𝑆 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ ∅ ) ) ) ) |
| 11 | 10 | fneq2d | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ( 𝑆 ++ ∅ ) Fn ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ↔ ( 𝑆 ++ ∅ ) Fn ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ ∅ ) ) ) ) ) |
| 12 | 3 11 | mpbird | ⊢ ( 𝑆 ∈ Word 𝐵 → ( 𝑆 ++ ∅ ) Fn ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) |
| 13 | wrdfn | ⊢ ( 𝑆 ∈ Word 𝐵 → 𝑆 Fn ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) | |
| 14 | ccatval1 | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ ∅ ∈ Word 𝐵 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 ++ ∅ ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) | |
| 15 | 1 14 | mp3an2 | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 ++ ∅ ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 16 | 12 13 15 | eqfnfvd | ⊢ ( 𝑆 ∈ Word 𝐵 → ( 𝑆 ++ ∅ ) = 𝑆 ) |