This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word is a prefix of itself. (Contributed by Stefan O'Rear, 16-Aug-2015) (Revised by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxid | ⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 prefix ( ♯ ‘ 𝑆 ) ) = 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | ⊢ ( 𝑆 ∈ Word 𝐴 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) | |
| 2 | nn0fz0 | ⊢ ( ( ♯ ‘ 𝑆 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝑆 ∈ Word 𝐴 → ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 4 | pfxf | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 prefix ( ♯ ‘ 𝑆 ) ) : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⟶ 𝐴 ) | |
| 5 | 3 4 | mpdan | ⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 prefix ( ♯ ‘ 𝑆 ) ) : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⟶ 𝐴 ) |
| 6 | 5 | ffnd | ⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 prefix ( ♯ ‘ 𝑆 ) ) Fn ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) |
| 7 | wrdfn | ⊢ ( 𝑆 ∈ Word 𝐴 → 𝑆 Fn ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) | |
| 8 | simpl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → 𝑆 ∈ Word 𝐴 ) | |
| 9 | 3 | adantr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 10 | simpr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) | |
| 11 | pfxfv | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 prefix ( ♯ ‘ 𝑆 ) ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) | |
| 12 | 8 9 10 11 | syl3anc | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 prefix ( ♯ ‘ 𝑆 ) ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 13 | 6 7 12 | eqfnfvd | ⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 prefix ( ♯ ‘ 𝑆 ) ) = 𝑆 ) |