This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by SN, 7-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluzadd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → ( 𝑁 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 2 | zaddcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝑀 + 𝐾 ) ∈ ℤ ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → ( 𝑀 + 𝐾 ) ∈ ℤ ) |
| 4 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 5 | zaddcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝑁 + 𝐾 ) ∈ ℤ ) | |
| 6 | 4 5 | sylan | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → ( 𝑁 + 𝐾 ) ∈ ℤ ) |
| 7 | 1 | zred | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℝ ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → 𝑀 ∈ ℝ ) |
| 9 | eluzelre | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℝ ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
| 11 | zre | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → 𝐾 ∈ ℝ ) |
| 13 | eluzle | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑁 ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → 𝑀 ≤ 𝑁 ) |
| 15 | 8 10 12 14 | leadd1dd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → ( 𝑀 + 𝐾 ) ≤ ( 𝑁 + 𝐾 ) ) |
| 16 | eluz2 | ⊢ ( ( 𝑁 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ↔ ( ( 𝑀 + 𝐾 ) ∈ ℤ ∧ ( 𝑁 + 𝐾 ) ∈ ℤ ∧ ( 𝑀 + 𝐾 ) ≤ ( 𝑁 + 𝐾 ) ) ) | |
| 17 | 3 6 15 16 | syl3anbrc | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → ( 𝑁 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |