This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| Assertion | efgtf | ⊢ ( 𝑋 ∈ 𝑊 → ( ( 𝑇 ‘ 𝑋 ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ∧ ( 𝑇 ‘ 𝑋 ) : ( ( 0 ... ( ♯ ‘ 𝑋 ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | fviss | ⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) | |
| 6 | 1 5 | eqsstri | ⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
| 7 | simpl | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑋 ∈ 𝑊 ) | |
| 8 | 6 7 | sselid | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑋 ∈ Word ( 𝐼 × 2o ) ) |
| 9 | simprr | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑏 ∈ ( 𝐼 × 2o ) ) | |
| 10 | 3 | efgmf | ⊢ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) |
| 11 | 10 | ffvelcdmi | ⊢ ( 𝑏 ∈ ( 𝐼 × 2o ) → ( 𝑀 ‘ 𝑏 ) ∈ ( 𝐼 × 2o ) ) |
| 12 | 11 | ad2antll | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑀 ‘ 𝑏 ) ∈ ( 𝐼 × 2o ) ) |
| 13 | 9 12 | s2cld | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) |
| 14 | splcl | ⊢ ( ( 𝑋 ∈ Word ( 𝐼 × 2o ) ∧ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) → ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 15 | 8 13 14 | syl2anc | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 16 | 1 | efgrcl | ⊢ ( 𝑋 ∈ 𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
| 17 | 16 | simprd | ⊢ ( 𝑋 ∈ 𝑊 → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 19 | 15 18 | eleqtrrd | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ∈ 𝑊 ) |
| 20 | 19 | ralrimivva | ⊢ ( 𝑋 ∈ 𝑊 → ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∀ 𝑏 ∈ ( 𝐼 × 2o ) ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ∈ 𝑊 ) |
| 21 | eqid | ⊢ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) | |
| 22 | 21 | fmpo | ⊢ ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∀ 𝑏 ∈ ( 𝐼 × 2o ) ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ∈ 𝑊 ↔ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) : ( ( 0 ... ( ♯ ‘ 𝑋 ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) |
| 23 | 20 22 | sylib | ⊢ ( 𝑋 ∈ 𝑊 → ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) : ( ( 0 ... ( ♯ ‘ 𝑋 ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) |
| 24 | ovex | ⊢ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∈ V | |
| 25 | 16 | simpld | ⊢ ( 𝑋 ∈ 𝑊 → 𝐼 ∈ V ) |
| 26 | 2on | ⊢ 2o ∈ On | |
| 27 | xpexg | ⊢ ( ( 𝐼 ∈ V ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V ) | |
| 28 | 25 26 27 | sylancl | ⊢ ( 𝑋 ∈ 𝑊 → ( 𝐼 × 2o ) ∈ V ) |
| 29 | xpexg | ⊢ ( ( ( 0 ... ( ♯ ‘ 𝑋 ) ) ∈ V ∧ ( 𝐼 × 2o ) ∈ V ) → ( ( 0 ... ( ♯ ‘ 𝑋 ) ) × ( 𝐼 × 2o ) ) ∈ V ) | |
| 30 | 24 28 29 | sylancr | ⊢ ( 𝑋 ∈ 𝑊 → ( ( 0 ... ( ♯ ‘ 𝑋 ) ) × ( 𝐼 × 2o ) ) ∈ V ) |
| 31 | 23 30 | fexd | ⊢ ( 𝑋 ∈ 𝑊 → ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ∈ V ) |
| 32 | fveq2 | ⊢ ( 𝑢 = 𝑋 → ( ♯ ‘ 𝑢 ) = ( ♯ ‘ 𝑋 ) ) | |
| 33 | 32 | oveq2d | ⊢ ( 𝑢 = 𝑋 → ( 0 ... ( ♯ ‘ 𝑢 ) ) = ( 0 ... ( ♯ ‘ 𝑋 ) ) ) |
| 34 | eqidd | ⊢ ( 𝑢 = 𝑋 → ( 𝐼 × 2o ) = ( 𝐼 × 2o ) ) | |
| 35 | oveq1 | ⊢ ( 𝑢 = 𝑋 → ( 𝑢 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) = ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) | |
| 36 | 33 34 35 | mpoeq123dv | ⊢ ( 𝑢 = 𝑋 → ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑢 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑢 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ) |
| 37 | oteq1 | ⊢ ( 𝑛 = 𝑎 → 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 = 〈 𝑎 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) | |
| 38 | oteq2 | ⊢ ( 𝑛 = 𝑎 → 〈 𝑎 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 = 〈 𝑎 , 𝑎 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) | |
| 39 | 37 38 | eqtrd | ⊢ ( 𝑛 = 𝑎 → 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 = 〈 𝑎 , 𝑎 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) |
| 40 | 39 | oveq2d | ⊢ ( 𝑛 = 𝑎 → ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) = ( 𝑣 splice 〈 𝑎 , 𝑎 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) |
| 41 | id | ⊢ ( 𝑤 = 𝑏 → 𝑤 = 𝑏 ) | |
| 42 | fveq2 | ⊢ ( 𝑤 = 𝑏 → ( 𝑀 ‘ 𝑤 ) = ( 𝑀 ‘ 𝑏 ) ) | |
| 43 | 41 42 | s2eqd | ⊢ ( 𝑤 = 𝑏 → 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 = 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ) |
| 44 | 43 | oteq3d | ⊢ ( 𝑤 = 𝑏 → 〈 𝑎 , 𝑎 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 = 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) |
| 45 | 44 | oveq2d | ⊢ ( 𝑤 = 𝑏 → ( 𝑣 splice 〈 𝑎 , 𝑎 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) = ( 𝑣 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) |
| 46 | 40 45 | cbvmpov | ⊢ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) |
| 47 | fveq2 | ⊢ ( 𝑣 = 𝑢 → ( ♯ ‘ 𝑣 ) = ( ♯ ‘ 𝑢 ) ) | |
| 48 | 47 | oveq2d | ⊢ ( 𝑣 = 𝑢 → ( 0 ... ( ♯ ‘ 𝑣 ) ) = ( 0 ... ( ♯ ‘ 𝑢 ) ) ) |
| 49 | eqidd | ⊢ ( 𝑣 = 𝑢 → ( 𝐼 × 2o ) = ( 𝐼 × 2o ) ) | |
| 50 | oveq1 | ⊢ ( 𝑣 = 𝑢 → ( 𝑣 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) = ( 𝑢 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) | |
| 51 | 48 49 50 | mpoeq123dv | ⊢ ( 𝑣 = 𝑢 → ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑢 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑢 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ) |
| 52 | 46 51 | eqtrid | ⊢ ( 𝑣 = 𝑢 → ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑢 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑢 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ) |
| 53 | 52 | cbvmptv | ⊢ ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) = ( 𝑢 ∈ 𝑊 ↦ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑢 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑢 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ) |
| 54 | 4 53 | eqtri | ⊢ 𝑇 = ( 𝑢 ∈ 𝑊 ↦ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑢 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑢 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ) |
| 55 | 36 54 | fvmptg | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ∈ V ) → ( 𝑇 ‘ 𝑋 ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ) |
| 56 | 31 55 | mpdan | ⊢ ( 𝑋 ∈ 𝑊 → ( 𝑇 ‘ 𝑋 ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ) |
| 57 | 56 | feq1d | ⊢ ( 𝑋 ∈ 𝑊 → ( ( 𝑇 ‘ 𝑋 ) : ( ( 0 ... ( ♯ ‘ 𝑋 ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ↔ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) : ( ( 0 ... ( ♯ ‘ 𝑋 ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) ) |
| 58 | 23 57 | mpbird | ⊢ ( 𝑋 ∈ 𝑊 → ( 𝑇 ‘ 𝑋 ) : ( ( 0 ... ( ♯ ‘ 𝑋 ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) |
| 59 | 56 58 | jca | ⊢ ( 𝑋 ∈ 𝑊 → ( ( 𝑇 ‘ 𝑋 ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ∧ ( 𝑇 ‘ 𝑋 ) : ( ( 0 ... ( ♯ ‘ 𝑋 ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) ) |