This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ersym.1 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | |
| ersym.2 | ⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) | ||
| Assertion | ersym | ⊢ ( 𝜑 → 𝐵 𝑅 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersym.1 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | |
| 2 | ersym.2 | ⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) | |
| 3 | errel | ⊢ ( 𝑅 Er 𝑋 → Rel 𝑅 ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → Rel 𝑅 ) |
| 5 | brrelex12 | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) | |
| 6 | 4 2 5 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 7 | brcnvg | ⊢ ( ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐵 ◡ 𝑅 𝐴 ↔ 𝐴 𝑅 𝐵 ) ) | |
| 8 | 7 | ancoms | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐵 ◡ 𝑅 𝐴 ↔ 𝐴 𝑅 𝐵 ) ) |
| 9 | 6 8 | syl | ⊢ ( 𝜑 → ( 𝐵 ◡ 𝑅 𝐴 ↔ 𝐴 𝑅 𝐵 ) ) |
| 10 | 2 9 | mpbird | ⊢ ( 𝜑 → 𝐵 ◡ 𝑅 𝐴 ) |
| 11 | df-er | ⊢ ( 𝑅 Er 𝑋 ↔ ( Rel 𝑅 ∧ dom 𝑅 = 𝑋 ∧ ( ◡ 𝑅 ∪ ( 𝑅 ∘ 𝑅 ) ) ⊆ 𝑅 ) ) | |
| 12 | 11 | simp3bi | ⊢ ( 𝑅 Er 𝑋 → ( ◡ 𝑅 ∪ ( 𝑅 ∘ 𝑅 ) ) ⊆ 𝑅 ) |
| 13 | 1 12 | syl | ⊢ ( 𝜑 → ( ◡ 𝑅 ∪ ( 𝑅 ∘ 𝑅 ) ) ⊆ 𝑅 ) |
| 14 | 13 | unssad | ⊢ ( 𝜑 → ◡ 𝑅 ⊆ 𝑅 ) |
| 15 | 14 | ssbrd | ⊢ ( 𝜑 → ( 𝐵 ◡ 𝑅 𝐴 → 𝐵 𝑅 𝐴 ) ) |
| 16 | 10 15 | mpd | ⊢ ( 𝜑 → 𝐵 𝑅 𝐴 ) |