This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iserd.1 | ⊢ ( 𝜑 → Rel 𝑅 ) | |
| iserd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑦 𝑅 𝑥 ) | ||
| iserd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) → 𝑥 𝑅 𝑧 ) | ||
| iserd.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 𝑅 𝑥 ) ) | ||
| Assertion | iserd | ⊢ ( 𝜑 → 𝑅 Er 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iserd.1 | ⊢ ( 𝜑 → Rel 𝑅 ) | |
| 2 | iserd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑦 𝑅 𝑥 ) | |
| 3 | iserd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) → 𝑥 𝑅 𝑧 ) | |
| 4 | iserd.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 𝑅 𝑥 ) ) | |
| 5 | eqidd | ⊢ ( 𝜑 → dom 𝑅 = dom 𝑅 ) | |
| 6 | 2 | ex | ⊢ ( 𝜑 → ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) |
| 7 | 3 | ex | ⊢ ( 𝜑 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 8 | 6 7 | jca | ⊢ ( 𝜑 → ( ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 9 | 8 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 10 | 9 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 11 | 10 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 12 | dfer2 | ⊢ ( 𝑅 Er dom 𝑅 ↔ ( Rel 𝑅 ∧ dom 𝑅 = dom 𝑅 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) | |
| 13 | 1 5 11 12 | syl3anbrc | ⊢ ( 𝜑 → 𝑅 Er dom 𝑅 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝑅 ) → 𝑅 Er dom 𝑅 ) |
| 15 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝑅 ) → 𝑥 ∈ dom 𝑅 ) | |
| 16 | 14 15 | erref | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝑅 ) → 𝑥 𝑅 𝑥 ) |
| 17 | 16 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝑅 → 𝑥 𝑅 𝑥 ) ) |
| 18 | vex | ⊢ 𝑥 ∈ V | |
| 19 | 18 18 | breldm | ⊢ ( 𝑥 𝑅 𝑥 → 𝑥 ∈ dom 𝑅 ) |
| 20 | 17 19 | impbid1 | ⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝑅 ↔ 𝑥 𝑅 𝑥 ) ) |
| 21 | 20 4 | bitr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝑅 ↔ 𝑥 ∈ 𝐴 ) ) |
| 22 | 21 | eqrdv | ⊢ ( 𝜑 → dom 𝑅 = 𝐴 ) |
| 23 | ereq2 | ⊢ ( dom 𝑅 = 𝐴 → ( 𝑅 Er dom 𝑅 ↔ 𝑅 Er 𝐴 ) ) | |
| 24 | 22 23 | syl | ⊢ ( 𝜑 → ( 𝑅 Er dom 𝑅 ↔ 𝑅 Er 𝐴 ) ) |
| 25 | 13 24 | mpbid | ⊢ ( 𝜑 → 𝑅 Er 𝐴 ) |