This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a splice, assuming the input word S has already been decomposed into its pieces. (Contributed by Mario Carneiro, 1-Oct-2015) (Proof shortened by AV, 15-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | splval2.a | ⊢ ( 𝜑 → 𝐴 ∈ Word 𝑋 ) | |
| splval2.b | ⊢ ( 𝜑 → 𝐵 ∈ Word 𝑋 ) | ||
| splval2.c | ⊢ ( 𝜑 → 𝐶 ∈ Word 𝑋 ) | ||
| splval2.r | ⊢ ( 𝜑 → 𝑅 ∈ Word 𝑋 ) | ||
| splval2.s | ⊢ ( 𝜑 → 𝑆 = ( ( 𝐴 ++ 𝐵 ) ++ 𝐶 ) ) | ||
| splval2.f | ⊢ ( 𝜑 → 𝐹 = ( ♯ ‘ 𝐴 ) ) | ||
| splval2.t | ⊢ ( 𝜑 → 𝑇 = ( 𝐹 + ( ♯ ‘ 𝐵 ) ) ) | ||
| Assertion | splval2 | ⊢ ( 𝜑 → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( 𝐴 ++ 𝑅 ) ++ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | splval2.a | ⊢ ( 𝜑 → 𝐴 ∈ Word 𝑋 ) | |
| 2 | splval2.b | ⊢ ( 𝜑 → 𝐵 ∈ Word 𝑋 ) | |
| 3 | splval2.c | ⊢ ( 𝜑 → 𝐶 ∈ Word 𝑋 ) | |
| 4 | splval2.r | ⊢ ( 𝜑 → 𝑅 ∈ Word 𝑋 ) | |
| 5 | splval2.s | ⊢ ( 𝜑 → 𝑆 = ( ( 𝐴 ++ 𝐵 ) ++ 𝐶 ) ) | |
| 6 | splval2.f | ⊢ ( 𝜑 → 𝐹 = ( ♯ ‘ 𝐴 ) ) | |
| 7 | splval2.t | ⊢ ( 𝜑 → 𝑇 = ( 𝐹 + ( ♯ ‘ 𝐵 ) ) ) | |
| 8 | ccatcl | ⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑋 ) | |
| 9 | 1 2 8 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑋 ) |
| 10 | ccatcl | ⊢ ( ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑋 ∧ 𝐶 ∈ Word 𝑋 ) → ( ( 𝐴 ++ 𝐵 ) ++ 𝐶 ) ∈ Word 𝑋 ) | |
| 11 | 9 3 10 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 ++ 𝐵 ) ++ 𝐶 ) ∈ Word 𝑋 ) |
| 12 | 5 11 | eqeltrd | ⊢ ( 𝜑 → 𝑆 ∈ Word 𝑋 ) |
| 13 | lencl | ⊢ ( 𝐴 ∈ Word 𝑋 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 14 | 1 13 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 15 | 6 14 | eqeltrd | ⊢ ( 𝜑 → 𝐹 ∈ ℕ0 ) |
| 16 | lencl | ⊢ ( 𝐵 ∈ Word 𝑋 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 17 | 2 16 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 18 | 15 17 | nn0addcld | ⊢ ( 𝜑 → ( 𝐹 + ( ♯ ‘ 𝐵 ) ) ∈ ℕ0 ) |
| 19 | 7 18 | eqeltrd | ⊢ ( 𝜑 → 𝑇 ∈ ℕ0 ) |
| 20 | splval | ⊢ ( ( 𝑆 ∈ Word 𝑋 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝑇 ∈ ℕ0 ∧ 𝑅 ∈ Word 𝑋 ) ) → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) | |
| 21 | 12 15 19 4 20 | syl13anc | ⊢ ( 𝜑 → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| 22 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 23 | 15 22 | eleqtrdi | ⊢ ( 𝜑 → 𝐹 ∈ ( ℤ≥ ‘ 0 ) ) |
| 24 | 15 | nn0zd | ⊢ ( 𝜑 → 𝐹 ∈ ℤ ) |
| 25 | 24 | uzidd | ⊢ ( 𝜑 → 𝐹 ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 26 | uzaddcl | ⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 𝐹 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) → ( 𝐹 + ( ♯ ‘ 𝐵 ) ) ∈ ( ℤ≥ ‘ 𝐹 ) ) | |
| 27 | 25 17 26 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 + ( ♯ ‘ 𝐵 ) ) ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 28 | 7 27 | eqeltrd | ⊢ ( 𝜑 → 𝑇 ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 29 | elfzuzb | ⊢ ( 𝐹 ∈ ( 0 ... 𝑇 ) ↔ ( 𝐹 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑇 ∈ ( ℤ≥ ‘ 𝐹 ) ) ) | |
| 30 | 23 28 29 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... 𝑇 ) ) |
| 31 | 19 22 | eleqtrdi | ⊢ ( 𝜑 → 𝑇 ∈ ( ℤ≥ ‘ 0 ) ) |
| 32 | ccatlen | ⊢ ( ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑋 ∧ 𝐶 ∈ Word 𝑋 ) → ( ♯ ‘ ( ( 𝐴 ++ 𝐵 ) ++ 𝐶 ) ) = ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) + ( ♯ ‘ 𝐶 ) ) ) | |
| 33 | 9 3 32 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ++ 𝐵 ) ++ 𝐶 ) ) = ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) + ( ♯ ‘ 𝐶 ) ) ) |
| 34 | 5 | fveq2d | ⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) = ( ♯ ‘ ( ( 𝐴 ++ 𝐵 ) ++ 𝐶 ) ) ) |
| 35 | 6 | oveq1d | ⊢ ( 𝜑 → ( 𝐹 + ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| 36 | ccatlen | ⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) | |
| 37 | 1 2 36 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| 38 | 35 7 37 | 3eqtr4d | ⊢ ( 𝜑 → 𝑇 = ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) |
| 39 | 38 | oveq1d | ⊢ ( 𝜑 → ( 𝑇 + ( ♯ ‘ 𝐶 ) ) = ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) + ( ♯ ‘ 𝐶 ) ) ) |
| 40 | 33 34 39 | 3eqtr4d | ⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) = ( 𝑇 + ( ♯ ‘ 𝐶 ) ) ) |
| 41 | 19 | nn0zd | ⊢ ( 𝜑 → 𝑇 ∈ ℤ ) |
| 42 | 41 | uzidd | ⊢ ( 𝜑 → 𝑇 ∈ ( ℤ≥ ‘ 𝑇 ) ) |
| 43 | lencl | ⊢ ( 𝐶 ∈ Word 𝑋 → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) | |
| 44 | 3 43 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) |
| 45 | uzaddcl | ⊢ ( ( 𝑇 ∈ ( ℤ≥ ‘ 𝑇 ) ∧ ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) → ( 𝑇 + ( ♯ ‘ 𝐶 ) ) ∈ ( ℤ≥ ‘ 𝑇 ) ) | |
| 46 | 42 44 45 | syl2anc | ⊢ ( 𝜑 → ( 𝑇 + ( ♯ ‘ 𝐶 ) ) ∈ ( ℤ≥ ‘ 𝑇 ) ) |
| 47 | 40 46 | eqeltrd | ⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝑇 ) ) |
| 48 | elfzuzb | ⊢ ( 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ↔ ( 𝑇 ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝑇 ) ) ) | |
| 49 | 31 47 48 | sylanbrc | ⊢ ( 𝜑 → 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 50 | ccatpfx | ⊢ ( ( 𝑆 ∈ Word 𝑋 ∧ 𝐹 ∈ ( 0 ... 𝑇 ) ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 prefix 𝐹 ) ++ ( 𝑆 substr 〈 𝐹 , 𝑇 〉 ) ) = ( 𝑆 prefix 𝑇 ) ) | |
| 51 | 12 30 49 50 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑆 prefix 𝐹 ) ++ ( 𝑆 substr 〈 𝐹 , 𝑇 〉 ) ) = ( 𝑆 prefix 𝑇 ) ) |
| 52 | lencl | ⊢ ( 𝑆 ∈ Word 𝑋 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) | |
| 53 | 12 52 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
| 54 | 53 22 | eleqtrdi | ⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 55 | eluzfz2 | ⊢ ( ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) → ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | |
| 56 | 54 55 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 57 | ccatpfx | ⊢ ( ( 𝑆 ∈ Word 𝑋 ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 prefix 𝑇 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) = ( 𝑆 prefix ( ♯ ‘ 𝑆 ) ) ) | |
| 58 | 12 49 56 57 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑆 prefix 𝑇 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) = ( 𝑆 prefix ( ♯ ‘ 𝑆 ) ) ) |
| 59 | pfxid | ⊢ ( 𝑆 ∈ Word 𝑋 → ( 𝑆 prefix ( ♯ ‘ 𝑆 ) ) = 𝑆 ) | |
| 60 | 12 59 | syl | ⊢ ( 𝜑 → ( 𝑆 prefix ( ♯ ‘ 𝑆 ) ) = 𝑆 ) |
| 61 | 58 60 5 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑆 prefix 𝑇 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) = ( ( 𝐴 ++ 𝐵 ) ++ 𝐶 ) ) |
| 62 | pfxcl | ⊢ ( 𝑆 ∈ Word 𝑋 → ( 𝑆 prefix 𝑇 ) ∈ Word 𝑋 ) | |
| 63 | 12 62 | syl | ⊢ ( 𝜑 → ( 𝑆 prefix 𝑇 ) ∈ Word 𝑋 ) |
| 64 | swrdcl | ⊢ ( 𝑆 ∈ Word 𝑋 → ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝑋 ) | |
| 65 | 12 64 | syl | ⊢ ( 𝜑 → ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝑋 ) |
| 66 | pfxlen | ⊢ ( ( 𝑆 ∈ Word 𝑋 ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( 𝑆 prefix 𝑇 ) ) = 𝑇 ) | |
| 67 | 12 49 66 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 prefix 𝑇 ) ) = 𝑇 ) |
| 68 | 67 38 | eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 prefix 𝑇 ) ) = ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) |
| 69 | ccatopth | ⊢ ( ( ( ( 𝑆 prefix 𝑇 ) ∈ Word 𝑋 ∧ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝑋 ) ∧ ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑋 ∧ 𝐶 ∈ Word 𝑋 ) ∧ ( ♯ ‘ ( 𝑆 prefix 𝑇 ) ) = ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) → ( ( ( 𝑆 prefix 𝑇 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) = ( ( 𝐴 ++ 𝐵 ) ++ 𝐶 ) ↔ ( ( 𝑆 prefix 𝑇 ) = ( 𝐴 ++ 𝐵 ) ∧ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) = 𝐶 ) ) ) | |
| 70 | 63 65 9 3 68 69 | syl221anc | ⊢ ( 𝜑 → ( ( ( 𝑆 prefix 𝑇 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) = ( ( 𝐴 ++ 𝐵 ) ++ 𝐶 ) ↔ ( ( 𝑆 prefix 𝑇 ) = ( 𝐴 ++ 𝐵 ) ∧ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) = 𝐶 ) ) ) |
| 71 | 61 70 | mpbid | ⊢ ( 𝜑 → ( ( 𝑆 prefix 𝑇 ) = ( 𝐴 ++ 𝐵 ) ∧ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) = 𝐶 ) ) |
| 72 | 71 | simpld | ⊢ ( 𝜑 → ( 𝑆 prefix 𝑇 ) = ( 𝐴 ++ 𝐵 ) ) |
| 73 | 51 72 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑆 prefix 𝐹 ) ++ ( 𝑆 substr 〈 𝐹 , 𝑇 〉 ) ) = ( 𝐴 ++ 𝐵 ) ) |
| 74 | pfxcl | ⊢ ( 𝑆 ∈ Word 𝑋 → ( 𝑆 prefix 𝐹 ) ∈ Word 𝑋 ) | |
| 75 | 12 74 | syl | ⊢ ( 𝜑 → ( 𝑆 prefix 𝐹 ) ∈ Word 𝑋 ) |
| 76 | swrdcl | ⊢ ( 𝑆 ∈ Word 𝑋 → ( 𝑆 substr 〈 𝐹 , 𝑇 〉 ) ∈ Word 𝑋 ) | |
| 77 | 12 76 | syl | ⊢ ( 𝜑 → ( 𝑆 substr 〈 𝐹 , 𝑇 〉 ) ∈ Word 𝑋 ) |
| 78 | uztrn | ⊢ ( ( ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝑇 ) ∧ 𝑇 ∈ ( ℤ≥ ‘ 𝐹 ) ) → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝐹 ) ) | |
| 79 | 47 28 78 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 80 | elfzuzb | ⊢ ( 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ↔ ( 𝐹 ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝐹 ) ) ) | |
| 81 | 23 79 80 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 82 | pfxlen | ⊢ ( ( 𝑆 ∈ Word 𝑋 ∧ 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) = 𝐹 ) | |
| 83 | 12 81 82 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) = 𝐹 ) |
| 84 | 83 6 | eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) = ( ♯ ‘ 𝐴 ) ) |
| 85 | ccatopth | ⊢ ( ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝑋 ∧ ( 𝑆 substr 〈 𝐹 , 𝑇 〉 ) ∈ Word 𝑋 ) ∧ ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) = ( ♯ ‘ 𝐴 ) ) → ( ( ( 𝑆 prefix 𝐹 ) ++ ( 𝑆 substr 〈 𝐹 , 𝑇 〉 ) ) = ( 𝐴 ++ 𝐵 ) ↔ ( ( 𝑆 prefix 𝐹 ) = 𝐴 ∧ ( 𝑆 substr 〈 𝐹 , 𝑇 〉 ) = 𝐵 ) ) ) | |
| 86 | 75 77 1 2 84 85 | syl221anc | ⊢ ( 𝜑 → ( ( ( 𝑆 prefix 𝐹 ) ++ ( 𝑆 substr 〈 𝐹 , 𝑇 〉 ) ) = ( 𝐴 ++ 𝐵 ) ↔ ( ( 𝑆 prefix 𝐹 ) = 𝐴 ∧ ( 𝑆 substr 〈 𝐹 , 𝑇 〉 ) = 𝐵 ) ) ) |
| 87 | 73 86 | mpbid | ⊢ ( 𝜑 → ( ( 𝑆 prefix 𝐹 ) = 𝐴 ∧ ( 𝑆 substr 〈 𝐹 , 𝑇 〉 ) = 𝐵 ) ) |
| 88 | 87 | simpld | ⊢ ( 𝜑 → ( 𝑆 prefix 𝐹 ) = 𝐴 ) |
| 89 | 88 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) = ( 𝐴 ++ 𝑅 ) ) |
| 90 | 71 | simprd | ⊢ ( 𝜑 → ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) = 𝐶 ) |
| 91 | 89 90 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) = ( ( 𝐴 ++ 𝑅 ) ++ 𝐶 ) ) |
| 92 | 21 91 | eqtrd | ⊢ ( 𝜑 → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( 𝐴 ++ 𝑅 ) ++ 𝐶 ) ) |