This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvfsumrlim . (Contributed by Mario Carneiro, 17-May-2016) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsum.s | ⊢ 𝑆 = ( 𝑇 (,) +∞ ) | |
| dvfsum.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| dvfsum.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| dvfsum.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| dvfsum.md | ⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) | ||
| dvfsum.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | ||
| dvfsum.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | ||
| dvfsum.b1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | ||
| dvfsum.b2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | ||
| dvfsum.b3 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | ||
| dvfsum.c | ⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) | ||
| dvfsum.u | ⊢ ( 𝜑 → 𝑈 ∈ ℝ* ) | ||
| dvfsum.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) | ||
| dvfsum.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) | ||
| dvfsumlem1.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | ||
| dvfsumlem1.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) | ||
| dvfsumlem1.3 | ⊢ ( 𝜑 → 𝐷 ≤ 𝑋 ) | ||
| dvfsumlem1.4 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | ||
| dvfsumlem1.5 | ⊢ ( 𝜑 → 𝑌 ≤ 𝑈 ) | ||
| dvfsumlem1.6 | ⊢ ( 𝜑 → 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) | ||
| Assertion | dvfsumlem2 | ⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑌 ) ≤ ( 𝐻 ‘ 𝑋 ) ∧ ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsum.s | ⊢ 𝑆 = ( 𝑇 (,) +∞ ) | |
| 2 | dvfsum.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | dvfsum.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | dvfsum.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 5 | dvfsum.md | ⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) | |
| 6 | dvfsum.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | |
| 7 | dvfsum.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | |
| 8 | dvfsum.b1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | |
| 9 | dvfsum.b2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | |
| 10 | dvfsum.b3 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | |
| 11 | dvfsum.c | ⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) | |
| 12 | dvfsum.u | ⊢ ( 𝜑 → 𝑈 ∈ ℝ* ) | |
| 13 | dvfsum.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) | |
| 14 | dvfsum.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) | |
| 15 | dvfsumlem1.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | |
| 16 | dvfsumlem1.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) | |
| 17 | dvfsumlem1.3 | ⊢ ( 𝜑 → 𝐷 ≤ 𝑋 ) | |
| 18 | dvfsumlem1.4 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | |
| 19 | dvfsumlem1.5 | ⊢ ( 𝜑 → 𝑌 ≤ 𝑈 ) | |
| 20 | dvfsumlem1.6 | ⊢ ( 𝜑 → 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) | |
| 21 | ioossre | ⊢ ( 𝑇 (,) +∞ ) ⊆ ℝ | |
| 22 | 1 21 | eqsstri | ⊢ 𝑆 ⊆ ℝ |
| 23 | 22 16 | sselid | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 24 | 15 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑇 (,) +∞ ) ) |
| 25 | 6 | rexrd | ⊢ ( 𝜑 → 𝑇 ∈ ℝ* ) |
| 26 | elioopnf | ⊢ ( 𝑇 ∈ ℝ* → ( 𝑋 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑋 ∈ ℝ ∧ 𝑇 < 𝑋 ) ) ) | |
| 27 | 25 26 | syl | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑋 ∈ ℝ ∧ 𝑇 < 𝑋 ) ) ) |
| 28 | 24 27 | mpbid | ⊢ ( 𝜑 → ( 𝑋 ∈ ℝ ∧ 𝑇 < 𝑋 ) ) |
| 29 | 28 | simpld | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 30 | reflcl | ⊢ ( 𝑋 ∈ ℝ → ( ⌊ ‘ 𝑋 ) ∈ ℝ ) | |
| 31 | 29 30 | syl | ⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ∈ ℝ ) |
| 32 | 23 31 | resubcld | ⊢ ( 𝜑 → ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) ∈ ℝ ) |
| 33 | csbeq1 | ⊢ ( 𝑦 = 𝑌 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) | |
| 34 | 33 | eleq1d | ⊢ ( 𝑦 = 𝑌 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 35 | 22 | a1i | ⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
| 36 | 35 7 8 10 | dvmptrecl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |
| 37 | 36 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) : 𝑆 ⟶ ℝ ) |
| 38 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 39 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 | |
| 40 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) | |
| 41 | 38 39 40 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) = ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 42 | 41 | fmpt | ⊢ ( ∀ 𝑦 ∈ 𝑆 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) : 𝑆 ⟶ ℝ ) |
| 43 | 37 42 | sylibr | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 44 | 34 43 16 | rspcdva | ⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 45 | 32 44 | remulcld | ⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 46 | csbeq1 | ⊢ ( 𝑦 = 𝑌 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) | |
| 47 | 46 | eleq1d | ⊢ ( 𝑦 = 𝑌 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
| 48 | 7 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) : 𝑆 ⟶ ℝ ) |
| 49 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 50 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 | |
| 51 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) | |
| 52 | 49 50 51 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) = ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
| 53 | 52 | fmpt | ⊢ ( ∀ 𝑦 ∈ 𝑆 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ↔ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) : 𝑆 ⟶ ℝ ) |
| 54 | 48 53 | sylibr | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 55 | 47 54 16 | rspcdva | ⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 56 | 45 55 | resubcld | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) |
| 57 | 29 31 | resubcld | ⊢ ( 𝜑 → ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ∈ ℝ ) |
| 58 | csbeq1 | ⊢ ( 𝑦 = 𝑋 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) | |
| 59 | 58 | eleq1d | ⊢ ( 𝑦 = 𝑋 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 60 | 59 43 15 | rspcdva | ⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 61 | 57 60 | remulcld | ⊢ ( 𝜑 → ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 62 | csbeq1 | ⊢ ( 𝑦 = 𝑋 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) | |
| 63 | 62 | eleq1d | ⊢ ( 𝑦 = 𝑋 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ↔ ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
| 64 | 63 54 15 | rspcdva | ⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 65 | 61 64 | resubcld | ⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) |
| 66 | fzfid | ⊢ ( 𝜑 → ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) ∈ Fin ) | |
| 67 | 9 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℝ ) |
| 68 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 69 | 68 2 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) → 𝑘 ∈ 𝑍 ) |
| 70 | 11 | eleq1d | ⊢ ( 𝑥 = 𝑘 → ( 𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ ) ) |
| 71 | 70 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℝ ∧ 𝑘 ∈ 𝑍 ) → 𝐶 ∈ ℝ ) |
| 72 | 67 69 71 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝐶 ∈ ℝ ) |
| 73 | 66 72 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ∈ ℝ ) |
| 74 | 57 44 | remulcld | ⊢ ( 𝜑 → ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 75 | 74 64 | resubcld | ⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) |
| 76 | 23 29 | resubcld | ⊢ ( 𝜑 → ( 𝑌 − 𝑋 ) ∈ ℝ ) |
| 77 | 44 76 | remulcld | ⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ∈ ℝ ) |
| 78 | 44 | recnd | ⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 79 | 23 | recnd | ⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 80 | 29 | recnd | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 81 | 78 79 80 | subdid | ⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) = ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑌 ) − ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑋 ) ) ) |
| 82 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 83 | 82 | mpomulcn | ⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 84 | csbeq1 | ⊢ ( 𝑧 = 𝑌 → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) | |
| 85 | 84 | eleq1d | ⊢ ( 𝑧 = 𝑌 → ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 86 | nfcv | ⊢ Ⅎ 𝑧 𝐵 | |
| 87 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 | |
| 88 | csbeq1a | ⊢ ( 𝑥 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) | |
| 89 | 86 87 88 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) = ( 𝑧 ∈ 𝑆 ↦ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 90 | 89 | fmpt | ⊢ ( ∀ 𝑧 ∈ 𝑆 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) : 𝑆 ⟶ ℝ ) |
| 91 | 37 90 | sylibr | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 92 | 85 91 16 | rspcdva | ⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 93 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 94 | 93 | a1i | ⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 95 | 28 | simprd | ⊢ ( 𝜑 → 𝑇 < 𝑋 ) |
| 96 | 23 | ltpnfd | ⊢ ( 𝜑 → 𝑌 < +∞ ) |
| 97 | iccssioo | ⊢ ( ( ( 𝑇 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 𝑇 < 𝑋 ∧ 𝑌 < +∞ ) ) → ( 𝑋 [,] 𝑌 ) ⊆ ( 𝑇 (,) +∞ ) ) | |
| 98 | 25 94 95 96 97 | syl22anc | ⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ( 𝑇 (,) +∞ ) ) |
| 99 | 98 21 | sstrdi | ⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
| 100 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 101 | 99 100 | sstrdi | ⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℂ ) |
| 102 | 100 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 103 | cncfmptc | ⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ ( 𝑋 [,] 𝑌 ) ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) | |
| 104 | 92 101 102 103 | syl3anc | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 105 | cncfmptid | ⊢ ( ( ( 𝑋 [,] 𝑌 ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝑦 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) | |
| 106 | 99 100 105 | sylancl | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝑦 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 107 | remulcl | ⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ∈ ℝ ) | |
| 108 | simpl | ⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) | |
| 109 | 108 | recnd | ⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 110 | simpr | ⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 111 | 110 | recnd | ⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 112 | 109 111 | jca | ⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) |
| 113 | ovmpot | ⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) | |
| 114 | 113 | eqcomd | ⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) |
| 115 | 112 114 | syl | ⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) |
| 116 | 115 | eleq1d | ⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ∈ ℝ ↔ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ ℝ ) ) |
| 117 | 116 | biimpd | ⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ∈ ℝ → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ ℝ ) ) |
| 118 | 107 117 | mpd | ⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ ℝ ) |
| 119 | 82 83 104 106 100 118 | cncfmpt2ss | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 120 | df-mpt | ⊢ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } | |
| 121 | 120 | eleq1i | ⊢ ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ↔ { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 122 | 121 | biimpi | ⊢ ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 123 | 119 122 | syl | ⊢ ( 𝜑 → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 124 | idd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ) | |
| 125 | 124 | a1dd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → ( 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ) ) |
| 126 | 125 | impd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ) |
| 127 | csbeq1 | ⊢ ( 𝑚 = 𝑌 → ⦋ 𝑚 / 𝑥 ⦌ 𝐵 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) | |
| 128 | 127 | eleq1d | ⊢ ( 𝑚 = 𝑌 → ( ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 129 | nfcv | ⊢ Ⅎ 𝑚 𝐵 | |
| 130 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑚 / 𝑥 ⦌ 𝐵 | |
| 131 | csbeq1a | ⊢ ( 𝑥 = 𝑚 → 𝐵 = ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) | |
| 132 | 129 130 131 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) = ( 𝑚 ∈ 𝑆 ↦ ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) |
| 133 | 132 | fmpt | ⊢ ( ∀ 𝑚 ∈ 𝑆 ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) : 𝑆 ⟶ ℝ ) |
| 134 | 37 133 | sylibr | ⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑆 ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 135 | 128 134 16 | rspcdva | ⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 136 | 135 | recnd | ⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 137 | 136 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 138 | elicc2 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑌 ) ) ) | |
| 139 | 29 23 138 | syl2anc | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑌 ) ) ) |
| 140 | 139 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝑦 ∈ ℝ ∧ 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑌 ) ) |
| 141 | 140 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑦 ∈ ℝ ) |
| 142 | 141 | recnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑦 ∈ ℂ ) |
| 143 | 137 142 | jca | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) |
| 144 | 143 113 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) |
| 145 | 144 | eqeq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ↔ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 146 | 145 | biimpd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) → 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 147 | 146 | ex | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → ( 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) → 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) ) |
| 148 | 147 | impd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) → 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 149 | 126 148 | jcad | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) ) |
| 150 | 124 | a1dd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → ( 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ) ) |
| 151 | 150 | impd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ) |
| 152 | csbeq1 | ⊢ ( 𝑘 = 𝑌 → ⦋ 𝑘 / 𝑥 ⦌ 𝐵 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) | |
| 153 | 152 | eleq1d | ⊢ ( 𝑘 = 𝑌 → ( ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 154 | nfcv | ⊢ Ⅎ 𝑘 𝐵 | |
| 155 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 | |
| 156 | csbeq1a | ⊢ ( 𝑥 = 𝑘 → 𝐵 = ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) | |
| 157 | 154 155 156 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) = ( 𝑘 ∈ 𝑆 ↦ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
| 158 | 157 | fmpt | ⊢ ( ∀ 𝑘 ∈ 𝑆 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) : 𝑆 ⟶ ℝ ) |
| 159 | 37 158 | sylibr | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑆 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 160 | 153 159 16 | rspcdva | ⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 161 | 160 | recnd | ⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 162 | 161 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 163 | 162 142 | jca | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) |
| 164 | 163 114 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) |
| 165 | 164 | eqeq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ↔ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) |
| 166 | 165 | biimpd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) → 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) |
| 167 | 166 | ex | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → ( 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) → 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) ) |
| 168 | 167 | impd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) → 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) |
| 169 | 151 168 | jcad | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) ) |
| 170 | 149 169 | impbid | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ↔ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) ) |
| 171 | 170 | opabbidv | ⊢ ( 𝜑 → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } ) |
| 172 | df-mpt | ⊢ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } | |
| 173 | 172 | eqcomi | ⊢ { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) |
| 174 | 173 | eqeq2i | ⊢ ( { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } ↔ { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 175 | 174 | biimpi | ⊢ ( { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 176 | 171 175 | syl | ⊢ ( 𝜑 → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 177 | 176 | eleq1d | ⊢ ( 𝜑 → ( { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ↔ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) ) |
| 178 | 177 | biimpd | ⊢ ( 𝜑 → ( { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) ) |
| 179 | 123 178 | mpd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 180 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 181 | 180 | a1i | ⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 182 | ioossicc | ⊢ ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) | |
| 183 | 182 99 | sstrid | ⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ⊆ ℝ ) |
| 184 | 183 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑦 ∈ ℝ ) |
| 185 | 184 | recnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑦 ∈ ℂ ) |
| 186 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ) → 1 ∈ ℂ ) | |
| 187 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 188 | 187 | recnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 189 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℂ ) | |
| 190 | 181 | dvmptid | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℝ ↦ 1 ) ) |
| 191 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 192 | iooretop | ⊢ ( 𝑋 (,) 𝑌 ) ∈ ( topGen ‘ ran (,) ) | |
| 193 | 192 | a1i | ⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ∈ ( topGen ‘ ran (,) ) ) |
| 194 | 181 188 189 190 183 191 82 193 | dvmptres | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝑦 ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ 1 ) ) |
| 195 | 181 185 186 194 78 | dvmptcmul | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 1 ) ) ) |
| 196 | 78 | mulridd | ⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 1 ) = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 197 | 196 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 1 ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 198 | 195 197 | eqtrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 199 | 98 1 | sseqtrrdi | ⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ 𝑆 ) |
| 200 | 199 | resmptd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ↾ ( 𝑋 [,] 𝑌 ) ) = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) |
| 201 | 7 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℂ ) |
| 202 | 201 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) : 𝑆 ⟶ ℂ ) |
| 203 | 10 | dmeqd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = dom ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
| 204 | 8 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐵 ∈ 𝑉 ) |
| 205 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝑆 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) = 𝑆 ) | |
| 206 | 204 205 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) = 𝑆 ) |
| 207 | 203 206 | eqtrd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = 𝑆 ) |
| 208 | dvcn | ⊢ ( ( ( ℝ ⊆ ℂ ∧ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) : 𝑆 ⟶ ℂ ∧ 𝑆 ⊆ ℝ ) ∧ dom ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = 𝑆 ) → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ ( 𝑆 –cn→ ℂ ) ) | |
| 209 | 102 202 35 207 208 | syl31anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ ( 𝑆 –cn→ ℂ ) ) |
| 210 | cncfcdm | ⊢ ( ( ℝ ⊆ ℂ ∧ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ ( 𝑆 –cn→ ℂ ) ) → ( ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ ( 𝑆 –cn→ ℝ ) ↔ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) : 𝑆 ⟶ ℝ ) ) | |
| 211 | 100 209 210 | sylancr | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ ( 𝑆 –cn→ ℝ ) ↔ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) : 𝑆 ⟶ ℝ ) ) |
| 212 | 48 211 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ ( 𝑆 –cn→ ℝ ) ) |
| 213 | 52 212 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ∈ ( 𝑆 –cn→ ℝ ) ) |
| 214 | rescncf | ⊢ ( ( 𝑋 [,] 𝑌 ) ⊆ 𝑆 → ( ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ∈ ( 𝑆 –cn→ ℝ ) → ( ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ↾ ( 𝑋 [,] 𝑌 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) ) | |
| 215 | 199 213 214 | sylc | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ↾ ( 𝑋 [,] 𝑌 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 216 | 200 215 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 217 | 54 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 218 | 217 | recnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 219 | 43 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 220 | 52 | oveq2i | ⊢ ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( ℝ D ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) |
| 221 | 10 220 41 | 3eqtr3g | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 222 | 182 199 | sstrid | ⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ⊆ 𝑆 ) |
| 223 | 181 218 219 221 222 191 82 193 | dvmptres | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 224 | 182 | sseli | ⊢ ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 225 | simpl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝜑 ) | |
| 226 | 199 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑦 ∈ 𝑆 ) |
| 227 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑌 ∈ 𝑆 ) |
| 228 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐷 ∈ ℝ ) |
| 229 | 29 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑋 ∈ ℝ ) |
| 230 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐷 ≤ 𝑋 ) |
| 231 | 140 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑋 ≤ 𝑦 ) |
| 232 | 228 229 141 230 231 | letrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐷 ≤ 𝑦 ) |
| 233 | 140 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑦 ≤ 𝑌 ) |
| 234 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑌 ≤ 𝑈 ) |
| 235 | simp2r | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) → 𝑌 ∈ 𝑆 ) | |
| 236 | eleq1 | ⊢ ( 𝑘 = 𝑌 → ( 𝑘 ∈ 𝑆 ↔ 𝑌 ∈ 𝑆 ) ) | |
| 237 | 236 | anbi2d | ⊢ ( 𝑘 = 𝑌 → ( ( 𝑦 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ↔ ( 𝑦 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ) ) |
| 238 | breq2 | ⊢ ( 𝑘 = 𝑌 → ( 𝑦 ≤ 𝑘 ↔ 𝑦 ≤ 𝑌 ) ) | |
| 239 | breq1 | ⊢ ( 𝑘 = 𝑌 → ( 𝑘 ≤ 𝑈 ↔ 𝑌 ≤ 𝑈 ) ) | |
| 240 | 238 239 | 3anbi23d | ⊢ ( 𝑘 = 𝑌 → ( ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ↔ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) ) |
| 241 | 237 240 | 3anbi23d | ⊢ ( 𝑘 = 𝑌 → ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) ↔ ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) ) ) |
| 242 | vex | ⊢ 𝑘 ∈ V | |
| 243 | 242 11 | csbie | ⊢ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 = 𝐶 |
| 244 | 243 152 | eqtr3id | ⊢ ( 𝑘 = 𝑌 → 𝐶 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 245 | 244 | breq1d | ⊢ ( 𝑘 = 𝑌 → ( 𝐶 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 246 | 241 245 | imbi12d | ⊢ ( 𝑘 = 𝑌 → ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) |
| 247 | nfv | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) | |
| 248 | nfcv | ⊢ Ⅎ 𝑥 𝐶 | |
| 249 | nfcv | ⊢ Ⅎ 𝑥 ≤ | |
| 250 | 248 249 39 | nfbr | ⊢ Ⅎ 𝑥 𝐶 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 251 | 247 250 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 252 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆 ) ) | |
| 253 | 252 | anbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ↔ ( 𝑦 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ) ) |
| 254 | breq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐷 ≤ 𝑥 ↔ 𝐷 ≤ 𝑦 ) ) | |
| 255 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≤ 𝑘 ↔ 𝑦 ≤ 𝑘 ) ) | |
| 256 | 254 255 | 3anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ↔ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) ) |
| 257 | 253 256 | 3anbi23d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) ↔ ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) ) ) |
| 258 | 40 | breq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐶 ≤ 𝐵 ↔ 𝐶 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 259 | 257 258 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) |
| 260 | 251 259 13 | chvarfv | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 261 | 246 260 | vtoclg | ⊢ ( 𝑌 ∈ 𝑆 → ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 262 | 235 261 | mpcom | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 263 | 225 226 227 232 233 234 262 | syl123anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 264 | 224 263 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 265 | 29 | rexrd | ⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
| 266 | 23 | rexrd | ⊢ ( 𝜑 → 𝑌 ∈ ℝ* ) |
| 267 | lbicc2 | ⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 268 | 265 266 18 267 | syl3anc | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 269 | ubicc2 | ⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌 ) → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 270 | 265 266 18 269 | syl3anc | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 271 | oveq2 | ⊢ ( 𝑦 = 𝑋 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑋 ) ) | |
| 272 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑌 ) ) | |
| 273 | 29 23 179 198 216 223 264 268 270 18 271 62 272 46 | dvle | ⊢ ( 𝜑 → ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑌 ) − ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑋 ) ) ≤ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
| 274 | 81 273 | eqbrtrd | ⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ≤ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
| 275 | 77 55 64 274 | lesubd | ⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ≤ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) ) |
| 276 | 74 | recnd | ⊢ ( 𝜑 → ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℂ ) |
| 277 | 45 | recnd | ⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℂ ) |
| 278 | 55 | recnd | ⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 279 | 276 277 278 | subsubd | ⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 280 | 277 276 | negsubdi2d | ⊢ ( 𝜑 → - ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) = ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
| 281 | 31 | recnd | ⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ∈ ℂ ) |
| 282 | 79 80 281 | nnncan2d | ⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ) = ( 𝑌 − 𝑋 ) ) |
| 283 | 282 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( 𝑌 − 𝑋 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 284 | 32 | recnd | ⊢ ( 𝜑 → ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) ∈ ℂ ) |
| 285 | 57 | recnd | ⊢ ( 𝜑 → ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ∈ ℂ ) |
| 286 | 284 285 78 | subdird | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
| 287 | 76 | recnd | ⊢ ( 𝜑 → ( 𝑌 − 𝑋 ) ∈ ℂ ) |
| 288 | 287 78 | mulcomd | ⊢ ( 𝜑 → ( ( 𝑌 − 𝑋 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) |
| 289 | 283 286 288 | 3eqtr3d | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) |
| 290 | 289 | negeqd | ⊢ ( 𝜑 → - ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) = - ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) |
| 291 | 280 290 | eqtr3d | ⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) = - ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) |
| 292 | 291 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( - ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 293 | 77 | recnd | ⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ∈ ℂ ) |
| 294 | 293 278 | negsubdid | ⊢ ( 𝜑 → - ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( - ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 295 | 292 294 | eqtr4d | ⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = - ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 296 | 293 278 | negsubdi2d | ⊢ ( 𝜑 → - ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) ) |
| 297 | 279 295 296 | 3eqtrd | ⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) ) |
| 298 | 275 297 | breqtrrd | ⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ≤ ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 299 | 64 74 56 298 | lesubd | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
| 300 | flle | ⊢ ( 𝑋 ∈ ℝ → ( ⌊ ‘ 𝑋 ) ≤ 𝑋 ) | |
| 301 | 29 300 | syl | ⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ≤ 𝑋 ) |
| 302 | 29 31 | subge0d | ⊢ ( 𝜑 → ( 0 ≤ ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ↔ ( ⌊ ‘ 𝑋 ) ≤ 𝑋 ) ) |
| 303 | 301 302 | mpbird | ⊢ ( 𝜑 → 0 ≤ ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ) |
| 304 | 58 | breq2d | ⊢ ( 𝑦 = 𝑋 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 305 | 263 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 306 | 304 305 268 | rspcdva | ⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 307 | 44 60 57 303 306 | lemul2ad | ⊢ ( 𝜑 → ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 308 | 74 61 64 307 | lesub1dd | ⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
| 309 | 56 75 65 299 308 | letrd | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
| 310 | 56 65 73 309 | leadd1dd | ⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ≤ ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ) |
| 311 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | dvfsumlem1 | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝑌 ) = ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ) |
| 312 | 29 | leidd | ⊢ ( 𝜑 → 𝑋 ≤ 𝑋 ) |
| 313 | 265 266 12 18 19 | xrletrd | ⊢ ( 𝜑 → 𝑋 ≤ 𝑈 ) |
| 314 | fllep1 | ⊢ ( 𝑋 ∈ ℝ → 𝑋 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) | |
| 315 | 29 314 | syl | ⊢ ( 𝜑 → 𝑋 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
| 316 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 17 312 313 315 | dvfsumlem1 | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝑋 ) = ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ) |
| 317 | 310 311 316 | 3brtr4d | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝑌 ) ≤ ( 𝐻 ‘ 𝑋 ) ) |
| 318 | 65 60 | resubcld | ⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 319 | 56 44 | resubcld | ⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 320 | peano2rem | ⊢ ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ∈ ℝ → ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ∈ ℝ ) | |
| 321 | 57 320 | syl | ⊢ ( 𝜑 → ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ∈ ℝ ) |
| 322 | 321 60 | remulcld | ⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 323 | 322 64 | resubcld | ⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) |
| 324 | peano2rem | ⊢ ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) ∈ ℝ → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ∈ ℝ ) | |
| 325 | 32 324 | syl | ⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ∈ ℝ ) |
| 326 | 325 60 | remulcld | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 327 | 326 55 | resubcld | ⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) |
| 328 | 325 44 | remulcld | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 329 | 328 55 | resubcld | ⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) |
| 330 | 322 | recnd | ⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ℂ ) |
| 331 | 326 | recnd | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ℂ ) |
| 332 | 330 331 | subcld | ⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ∈ ℂ ) |
| 333 | 332 278 | addcomd | ⊢ ( 𝜑 → ( ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 + ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) ) |
| 334 | 330 331 278 | subsubd | ⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 335 | 278 331 330 | subsub2d | ⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 + ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) ) |
| 336 | 333 334 335 | 3eqtr4d | ⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) ) |
| 337 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 338 | 284 285 337 | nnncan2d | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) − ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ) = ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ) ) |
| 339 | 338 282 | eqtrd | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) − ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ) = ( 𝑌 − 𝑋 ) ) |
| 340 | 339 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) − ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ( ( 𝑌 − 𝑋 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 341 | 325 | recnd | ⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ∈ ℂ ) |
| 342 | 321 | recnd | ⊢ ( 𝜑 → ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ∈ ℂ ) |
| 343 | 60 | recnd | ⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 344 | 341 342 343 | subdird | ⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) − ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) |
| 345 | 287 343 | mulcomd | ⊢ ( 𝜑 → ( ( 𝑌 − 𝑋 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) |
| 346 | 340 344 345 | 3eqtr3d | ⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) |
| 347 | 346 | oveq2d | ⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) ) |
| 348 | 336 347 | eqtrd | ⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) ) |
| 349 | 60 76 | remulcld | ⊢ ( 𝜑 → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ∈ ℝ ) |
| 350 | cncfmptc | ⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ ( 𝑋 [,] 𝑌 ) ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) | |
| 351 | 60 101 102 350 | syl3anc | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 352 | remulcl | ⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ∈ ℝ ) | |
| 353 | simpl | ⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) | |
| 354 | 353 | recnd | ⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 355 | simpr | ⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 356 | 355 | recnd | ⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 357 | 354 356 | jca | ⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) |
| 358 | ovmpot | ⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) | |
| 359 | 358 | eqcomd | ⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) |
| 360 | 357 359 | syl | ⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) |
| 361 | 360 | eleq1d | ⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ∈ ℝ ↔ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ ℝ ) ) |
| 362 | 361 | biimpd | ⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ∈ ℝ → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ ℝ ) ) |
| 363 | 352 362 | mpd | ⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ ℝ ) |
| 364 | 82 83 351 106 100 363 | cncfmpt2ss | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 365 | df-mpt | ⊢ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } | |
| 366 | 365 | eleq1i | ⊢ ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ↔ { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 367 | 366 | biimpi | ⊢ ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 368 | 364 367 | syl | ⊢ ( 𝜑 → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 369 | 124 | a1dd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → ( 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ) ) |
| 370 | 369 | impd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ) |
| 371 | 343 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 372 | 371 142 | jca | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) |
| 373 | 372 358 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) |
| 374 | 373 | eqeq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ↔ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 375 | 374 | biimpd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) → 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 376 | 375 | ex | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → ( 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) → 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) ) |
| 377 | 376 | impd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) → 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 378 | 370 377 | jcad | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) ) |
| 379 | 124 | a1dd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → ( 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ) ) |
| 380 | 379 | impd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ) |
| 381 | 372 359 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) |
| 382 | 381 | eqeq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ↔ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) |
| 383 | 382 | biimpd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) → 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) |
| 384 | 383 | ex | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → ( 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) → 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) ) |
| 385 | 384 | impd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) → 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) |
| 386 | 380 385 | jcad | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) ) |
| 387 | 378 386 | impbid | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ↔ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) ) |
| 388 | 387 | opabbidv | ⊢ ( 𝜑 → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } ) |
| 389 | df-mpt | ⊢ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } | |
| 390 | 389 | eqcomi | ⊢ { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) |
| 391 | 390 | eqeq2i | ⊢ ( { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } ↔ { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 392 | 391 | biimpi | ⊢ ( { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 393 | 388 392 | syl | ⊢ ( 𝜑 → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 394 | 393 | eleq1d | ⊢ ( 𝜑 → ( { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ↔ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) ) |
| 395 | 394 | biimpd | ⊢ ( 𝜑 → ( { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) ) |
| 396 | 368 395 | mpd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 397 | 181 185 186 194 343 | dvmptcmul | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 1 ) ) ) |
| 398 | 343 | mulridd | ⊢ ( 𝜑 → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 1 ) = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 399 | 398 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 1 ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 400 | 397 399 | eqtrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 401 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑋 ∈ 𝑆 ) |
| 402 | 141 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑦 ∈ ℝ* ) |
| 403 | 266 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑌 ∈ ℝ* ) |
| 404 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑈 ∈ ℝ* ) |
| 405 | 402 403 404 233 234 | xrletrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑦 ≤ 𝑈 ) |
| 406 | vex | ⊢ 𝑦 ∈ V | |
| 407 | eleq1 | ⊢ ( 𝑘 = 𝑦 → ( 𝑘 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆 ) ) | |
| 408 | 407 | anbi2d | ⊢ ( 𝑘 = 𝑦 → ( ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ↔ ( 𝑋 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ) |
| 409 | breq2 | ⊢ ( 𝑘 = 𝑦 → ( 𝑋 ≤ 𝑘 ↔ 𝑋 ≤ 𝑦 ) ) | |
| 410 | breq1 | ⊢ ( 𝑘 = 𝑦 → ( 𝑘 ≤ 𝑈 ↔ 𝑦 ≤ 𝑈 ) ) | |
| 411 | 409 410 | 3anbi23d | ⊢ ( 𝑘 = 𝑦 → ( ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ↔ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑈 ) ) ) |
| 412 | 408 411 | 3anbi23d | ⊢ ( 𝑘 = 𝑦 → ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) ↔ ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑈 ) ) ) ) |
| 413 | csbeq1 | ⊢ ( 𝑘 = 𝑦 → ⦋ 𝑘 / 𝑥 ⦌ 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) | |
| 414 | 243 413 | eqtr3id | ⊢ ( 𝑘 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 415 | 414 | breq1d | ⊢ ( 𝑘 = 𝑦 → ( 𝐶 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 416 | 412 415 | imbi12d | ⊢ ( 𝑘 = 𝑦 → ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ↔ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑈 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) |
| 417 | simp2l | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝑋 ∈ 𝑆 ) | |
| 418 | nfv | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) | |
| 419 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑋 / 𝑥 ⦌ 𝐵 | |
| 420 | 248 249 419 | nfbr | ⊢ Ⅎ 𝑥 𝐶 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 |
| 421 | 418 420 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 422 | eleq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝑆 ↔ 𝑋 ∈ 𝑆 ) ) | |
| 423 | 422 | anbi1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ↔ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ) ) |
| 424 | breq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐷 ≤ 𝑥 ↔ 𝐷 ≤ 𝑋 ) ) | |
| 425 | breq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑘 ↔ 𝑋 ≤ 𝑘 ) ) | |
| 426 | 424 425 | 3anbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ↔ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) ) |
| 427 | 423 426 | 3anbi23d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) ↔ ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) ) ) |
| 428 | csbeq1a | ⊢ ( 𝑥 = 𝑋 → 𝐵 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) | |
| 429 | 428 | breq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝐶 ≤ 𝐵 ↔ 𝐶 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 430 | 427 429 | imbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) ↔ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) |
| 431 | 421 430 13 | vtoclg1f | ⊢ ( 𝑋 ∈ 𝑆 → ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 432 | 417 431 | mpcom | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 433 | 406 416 432 | vtocl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑈 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 434 | 225 401 226 230 231 405 433 | syl123anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 435 | 224 434 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 436 | oveq2 | ⊢ ( 𝑦 = 𝑋 → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑋 ) ) | |
| 437 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑌 ) ) | |
| 438 | 29 23 216 223 396 400 435 268 270 18 62 436 46 437 | dvle | ⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑌 ) − ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑋 ) ) ) |
| 439 | 343 79 80 | subdid | ⊢ ( 𝜑 → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) = ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑌 ) − ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑋 ) ) ) |
| 440 | 438 439 | breqtrrd | ⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ≤ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) |
| 441 | 55 64 349 440 | subled | ⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) |
| 442 | 348 441 | eqbrtrd | ⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) |
| 443 | 322 327 64 442 | subled | ⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 444 | 325 | renegcld | ⊢ ( 𝜑 → - ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ∈ ℝ ) |
| 445 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
| 446 | 23 31 445 | lesubadd2d | ⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) ≤ 1 ↔ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 447 | 20 446 | mpbird | ⊢ ( 𝜑 → ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) ≤ 1 ) |
| 448 | 32 445 | suble0d | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ≤ 0 ↔ ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) ≤ 1 ) ) |
| 449 | 447 448 | mpbird | ⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ≤ 0 ) |
| 450 | 325 | le0neg1d | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ≤ 0 ↔ 0 ≤ - ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ) ) |
| 451 | 449 450 | mpbid | ⊢ ( 𝜑 → 0 ≤ - ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ) |
| 452 | 44 60 444 451 306 | lemul2ad | ⊢ ( 𝜑 → ( - ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ≤ ( - ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 453 | 341 78 | mulneg1d | ⊢ ( 𝜑 → ( - ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = - ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 454 | 341 343 | mulneg1d | ⊢ ( 𝜑 → ( - ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = - ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 455 | 452 453 454 | 3brtr3d | ⊢ ( 𝜑 → - ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ≤ - ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 456 | 326 328 | lenegd | ⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ↔ - ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ≤ - ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) |
| 457 | 455 456 | mpbird | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 458 | 326 328 55 457 | lesub1dd | ⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 459 | 323 327 329 443 458 | letrd | ⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 460 | 285 337 343 | subdird | ⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( 1 · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) |
| 461 | 343 | mullidd | ⊢ ( 𝜑 → ( 1 · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 462 | 461 | oveq2d | ⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( 1 · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) = ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 463 | 460 462 | eqtrd | ⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 464 | 463 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) = ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
| 465 | 284 337 78 | subdird | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( 1 · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
| 466 | 78 | mullidd | ⊢ ( 𝜑 → ( 1 · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 467 | 466 | oveq2d | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( 1 · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 468 | 465 467 | eqtrd | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 469 | 468 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 470 | 459 464 469 | 3brtr3d | ⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 471 | 61 | recnd | ⊢ ( 𝜑 → ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ℂ ) |
| 472 | 64 | recnd | ⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 473 | 471 472 343 | sub32d | ⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
| 474 | 277 278 78 | sub32d | ⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 475 | 470 473 474 | 3brtr4d | ⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 476 | 318 319 73 475 | leadd1dd | ⊢ ( 𝜑 → ( ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ≤ ( ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ) |
| 477 | 65 | recnd | ⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ∈ ℂ ) |
| 478 | 73 | recnd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ∈ ℂ ) |
| 479 | 477 478 343 | addsubd | ⊢ ( 𝜑 → ( ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ( ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ) |
| 480 | 56 | recnd | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ∈ ℂ ) |
| 481 | 480 478 78 | addsubd | ⊢ ( 𝜑 → ( ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ) |
| 482 | 476 479 481 | 3brtr4d | ⊢ ( 𝜑 → ( ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 483 | 316 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ( ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 484 | 311 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 485 | 482 483 484 | 3brtr4d | ⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 486 | 317 485 | jca | ⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑌 ) ≤ ( 𝐻 ‘ 𝑋 ) ∧ ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |