This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvfsumrlim . (Contributed by Mario Carneiro, 17-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsum.s | ⊢ 𝑆 = ( 𝑇 (,) +∞ ) | |
| dvfsum.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| dvfsum.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| dvfsum.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| dvfsum.md | ⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) | ||
| dvfsum.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | ||
| dvfsum.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | ||
| dvfsum.b1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | ||
| dvfsum.b2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | ||
| dvfsum.b3 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | ||
| dvfsum.c | ⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) | ||
| dvfsum.u | ⊢ ( 𝜑 → 𝑈 ∈ ℝ* ) | ||
| dvfsum.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) | ||
| dvfsum.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) | ||
| dvfsumlem1.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | ||
| dvfsumlem1.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) | ||
| dvfsumlem1.3 | ⊢ ( 𝜑 → 𝐷 ≤ 𝑋 ) | ||
| dvfsumlem1.4 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | ||
| dvfsumlem1.5 | ⊢ ( 𝜑 → 𝑌 ≤ 𝑈 ) | ||
| dvfsumlem1.6 | ⊢ ( 𝜑 → 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) | ||
| Assertion | dvfsumlem1 | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝑌 ) = ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsum.s | ⊢ 𝑆 = ( 𝑇 (,) +∞ ) | |
| 2 | dvfsum.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | dvfsum.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | dvfsum.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 5 | dvfsum.md | ⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) | |
| 6 | dvfsum.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | |
| 7 | dvfsum.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | |
| 8 | dvfsum.b1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | |
| 9 | dvfsum.b2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | |
| 10 | dvfsum.b3 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | |
| 11 | dvfsum.c | ⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) | |
| 12 | dvfsum.u | ⊢ ( 𝜑 → 𝑈 ∈ ℝ* ) | |
| 13 | dvfsum.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) | |
| 14 | dvfsum.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) | |
| 15 | dvfsumlem1.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | |
| 16 | dvfsumlem1.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) | |
| 17 | dvfsumlem1.3 | ⊢ ( 𝜑 → 𝐷 ≤ 𝑋 ) | |
| 18 | dvfsumlem1.4 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | |
| 19 | dvfsumlem1.5 | ⊢ ( 𝜑 → 𝑌 ≤ 𝑈 ) | |
| 20 | dvfsumlem1.6 | ⊢ ( 𝜑 → 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) | |
| 21 | ioossre | ⊢ ( 𝑇 (,) +∞ ) ⊆ ℝ | |
| 22 | 1 21 | eqsstri | ⊢ 𝑆 ⊆ ℝ |
| 23 | 22 16 | sselid | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 24 | 22 15 | sselid | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 25 | 24 | flcld | ⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ∈ ℤ ) |
| 26 | reflcl | ⊢ ( 𝑋 ∈ ℝ → ( ⌊ ‘ 𝑋 ) ∈ ℝ ) | |
| 27 | 24 26 | syl | ⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ∈ ℝ ) |
| 28 | flle | ⊢ ( 𝑋 ∈ ℝ → ( ⌊ ‘ 𝑋 ) ≤ 𝑋 ) | |
| 29 | 24 28 | syl | ⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ≤ 𝑋 ) |
| 30 | 27 24 23 29 18 | letrd | ⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ≤ 𝑌 ) |
| 31 | flbi | ⊢ ( ( 𝑌 ∈ ℝ ∧ ( ⌊ ‘ 𝑋 ) ∈ ℤ ) → ( ( ⌊ ‘ 𝑌 ) = ( ⌊ ‘ 𝑋 ) ↔ ( ( ⌊ ‘ 𝑋 ) ≤ 𝑌 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) ) | |
| 32 | 31 | baibd | ⊢ ( ( ( 𝑌 ∈ ℝ ∧ ( ⌊ ‘ 𝑋 ) ∈ ℤ ) ∧ ( ⌊ ‘ 𝑋 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑌 ) = ( ⌊ ‘ 𝑋 ) ↔ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 33 | 23 25 30 32 | syl21anc | ⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑌 ) = ( ⌊ ‘ 𝑋 ) ↔ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 34 | 33 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ⌊ ‘ 𝑌 ) = ( ⌊ ‘ 𝑋 ) ) |
| 35 | 34 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) = ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) ) |
| 36 | 35 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 37 | 34 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) = ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) ) |
| 38 | 37 | sumeq1d | ⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 = Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) |
| 39 | 38 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 40 | 36 39 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 41 | simpr | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) | |
| 42 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑋 ∈ ℝ ) |
| 43 | 42 | flcld | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ⌊ ‘ 𝑋 ) ∈ ℤ ) |
| 44 | 43 | peano2zd | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℤ ) |
| 45 | 41 44 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑌 ∈ ℤ ) |
| 46 | flid | ⊢ ( 𝑌 ∈ ℤ → ( ⌊ ‘ 𝑌 ) = 𝑌 ) | |
| 47 | 45 46 | syl | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ⌊ ‘ 𝑌 ) = 𝑌 ) |
| 48 | 47 41 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ⌊ ‘ 𝑌 ) = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
| 49 | 48 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) = ( 𝑌 − ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 50 | 49 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( 𝑌 − ( ( ⌊ ‘ 𝑋 ) + 1 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 51 | 23 | recnd | ⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 52 | 27 | recnd | ⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ∈ ℂ ) |
| 53 | 51 52 | subcld | ⊢ ( 𝜑 → ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) ∈ ℂ ) |
| 54 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 55 | 22 | a1i | ⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
| 56 | 55 7 8 10 | dvmptrecl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |
| 57 | 56 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℂ ) |
| 58 | 57 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℂ ) |
| 59 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑌 / 𝑥 ⦌ 𝐵 | |
| 60 | 59 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ |
| 61 | csbeq1a | ⊢ ( 𝑥 = 𝑌 → 𝐵 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) | |
| 62 | 61 | eleq1d | ⊢ ( 𝑥 = 𝑌 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
| 63 | 60 62 | rspc | ⊢ ( 𝑌 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℂ → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
| 64 | 16 58 63 | sylc | ⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 65 | 53 54 64 | subdird | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( 1 · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
| 66 | 51 52 54 | subsub4d | ⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) = ( 𝑌 − ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 67 | 66 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( 𝑌 − ( ( ⌊ ‘ 𝑋 ) + 1 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 68 | 64 | mullidd | ⊢ ( 𝜑 → ( 1 · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 69 | 68 | oveq2d | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( 1 · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 70 | 65 67 69 | 3eqtr3d | ⊢ ( 𝜑 → ( ( 𝑌 − ( ( ⌊ ‘ 𝑋 ) + 1 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 71 | 70 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( 𝑌 − ( ( ⌊ ‘ 𝑋 ) + 1 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 72 | 50 71 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 73 | 25 | peano2zd | ⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℤ ) |
| 74 | 3 | zred | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 75 | peano2rem | ⊢ ( 𝑀 ∈ ℝ → ( 𝑀 − 1 ) ∈ ℝ ) | |
| 76 | 74 75 | syl | ⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℝ ) |
| 77 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
| 78 | 74 77 4 | lesubaddd | ⊢ ( 𝜑 → ( ( 𝑀 − 1 ) ≤ 𝐷 ↔ 𝑀 ≤ ( 𝐷 + 1 ) ) ) |
| 79 | 5 78 | mpbird | ⊢ ( 𝜑 → ( 𝑀 − 1 ) ≤ 𝐷 ) |
| 80 | 76 4 24 79 17 | letrd | ⊢ ( 𝜑 → ( 𝑀 − 1 ) ≤ 𝑋 ) |
| 81 | peano2zm | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 − 1 ) ∈ ℤ ) | |
| 82 | 3 81 | syl | ⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℤ ) |
| 83 | flge | ⊢ ( ( 𝑋 ∈ ℝ ∧ ( 𝑀 − 1 ) ∈ ℤ ) → ( ( 𝑀 − 1 ) ≤ 𝑋 ↔ ( 𝑀 − 1 ) ≤ ( ⌊ ‘ 𝑋 ) ) ) | |
| 84 | 24 82 83 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑀 − 1 ) ≤ 𝑋 ↔ ( 𝑀 − 1 ) ≤ ( ⌊ ‘ 𝑋 ) ) ) |
| 85 | 80 84 | mpbid | ⊢ ( 𝜑 → ( 𝑀 − 1 ) ≤ ( ⌊ ‘ 𝑋 ) ) |
| 86 | 74 77 27 | lesubaddd | ⊢ ( 𝜑 → ( ( 𝑀 − 1 ) ≤ ( ⌊ ‘ 𝑋 ) ↔ 𝑀 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 87 | 85 86 | mpbid | ⊢ ( 𝜑 → 𝑀 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
| 88 | eluz2 | ⊢ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℤ ∧ 𝑀 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) | |
| 89 | 3 73 87 88 | syl3anbrc | ⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 90 | 9 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
| 91 | 90 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℂ ) |
| 92 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 93 | 92 2 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑘 ∈ 𝑍 ) |
| 94 | 11 | eleq1d | ⊢ ( 𝑥 = 𝑘 → ( 𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ ) ) |
| 95 | 94 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℂ ∧ 𝑘 ∈ 𝑍 ) → 𝐶 ∈ ℂ ) |
| 96 | 91 93 95 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) → 𝐶 ∈ ℂ ) |
| 97 | eqvisset | ⊢ ( 𝑘 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ V ) | |
| 98 | eqeq2 | ⊢ ( 𝑘 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → ( 𝑥 = 𝑘 ↔ 𝑥 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) | |
| 99 | 98 | biimpar | ⊢ ( ( 𝑘 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ∧ 𝑥 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑥 = 𝑘 ) |
| 100 | 99 11 | syl | ⊢ ( ( 𝑘 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ∧ 𝑥 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝐵 = 𝐶 ) |
| 101 | 97 100 | csbied | ⊢ ( 𝑘 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 = 𝐶 ) |
| 102 | 101 | eqcomd | ⊢ ( 𝑘 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → 𝐶 = ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) |
| 103 | 89 96 102 | fsumm1 | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) 𝐶 = ( Σ 𝑘 ∈ ( 𝑀 ... ( ( ( ⌊ ‘ 𝑋 ) + 1 ) − 1 ) ) 𝐶 + ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
| 104 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 105 | pncan | ⊢ ( ( ( ⌊ ‘ 𝑋 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ⌊ ‘ 𝑋 ) + 1 ) − 1 ) = ( ⌊ ‘ 𝑋 ) ) | |
| 106 | 52 104 105 | sylancl | ⊢ ( 𝜑 → ( ( ( ⌊ ‘ 𝑋 ) + 1 ) − 1 ) = ( ⌊ ‘ 𝑋 ) ) |
| 107 | 106 | oveq2d | ⊢ ( 𝜑 → ( 𝑀 ... ( ( ( ⌊ ‘ 𝑋 ) + 1 ) − 1 ) ) = ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) ) |
| 108 | 107 | sumeq1d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ( ( ⌊ ‘ 𝑋 ) + 1 ) − 1 ) ) 𝐶 = Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) |
| 109 | 108 | oveq1d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ( ( ⌊ ‘ 𝑋 ) + 1 ) − 1 ) ) 𝐶 + ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
| 110 | 103 109 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) 𝐶 = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
| 111 | 110 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) 𝐶 = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
| 112 | 48 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) = ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 113 | 112 | sumeq1d | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 = Σ 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) 𝐶 ) |
| 114 | 41 | csbeq1d | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 = ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) |
| 115 | 114 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
| 116 | 111 113 115 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 117 | 116 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 118 | fzfid | ⊢ ( 𝜑 → ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) ∈ Fin ) | |
| 119 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 120 | 119 2 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) → 𝑘 ∈ 𝑍 ) |
| 121 | 91 120 95 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝐶 ∈ ℂ ) |
| 122 | 118 121 | fsumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ∈ ℂ ) |
| 123 | 7 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℂ ) |
| 124 | 123 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℂ ) |
| 125 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑌 / 𝑥 ⦌ 𝐴 | |
| 126 | 125 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℂ |
| 127 | csbeq1a | ⊢ ( 𝑥 = 𝑌 → 𝐴 = ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) | |
| 128 | 127 | eleq1d | ⊢ ( 𝑥 = 𝑌 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
| 129 | 126 128 | rspc | ⊢ ( 𝑌 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℂ → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
| 130 | 16 124 129 | sylc | ⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 131 | 122 64 130 | addsubd | ⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 132 | 131 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 133 | 117 132 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 134 | 72 133 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
| 135 | 53 64 | mulcld | ⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℂ ) |
| 136 | 135 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℂ ) |
| 137 | 64 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 138 | 122 130 | subcld | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ∈ ℂ ) |
| 139 | 138 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ∈ ℂ ) |
| 140 | 136 137 139 | nppcan3d | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 141 | 134 140 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 142 | peano2re | ⊢ ( ( ⌊ ‘ 𝑋 ) ∈ ℝ → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ) | |
| 143 | 27 142 | syl | ⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ) |
| 144 | 23 143 | leloed | ⊢ ( 𝜑 → ( 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ↔ ( 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ∨ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) ) |
| 145 | 20 144 | mpbid | ⊢ ( 𝜑 → ( 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ∨ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 146 | 40 141 145 | mpjaodan | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 147 | ovex | ⊢ ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ∈ V | |
| 148 | nfcv | ⊢ Ⅎ 𝑥 𝑌 | |
| 149 | nfcv | ⊢ Ⅎ 𝑥 ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) | |
| 150 | nfcv | ⊢ Ⅎ 𝑥 · | |
| 151 | 149 150 59 | nfov | ⊢ Ⅎ 𝑥 ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 152 | nfcv | ⊢ Ⅎ 𝑥 + | |
| 153 | nfcv | ⊢ Ⅎ 𝑥 Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 | |
| 154 | nfcv | ⊢ Ⅎ 𝑥 − | |
| 155 | 153 154 125 | nfov | ⊢ Ⅎ 𝑥 ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) |
| 156 | 151 152 155 | nfov | ⊢ Ⅎ 𝑥 ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 157 | id | ⊢ ( 𝑥 = 𝑌 → 𝑥 = 𝑌 ) | |
| 158 | fveq2 | ⊢ ( 𝑥 = 𝑌 → ( ⌊ ‘ 𝑥 ) = ( ⌊ ‘ 𝑌 ) ) | |
| 159 | 157 158 | oveq12d | ⊢ ( 𝑥 = 𝑌 → ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) = ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) ) |
| 160 | 159 61 | oveq12d | ⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) = ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 161 | 158 | oveq2d | ⊢ ( 𝑥 = 𝑌 → ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) = ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) ) |
| 162 | 161 | sumeq1d | ⊢ ( 𝑥 = 𝑌 → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 = Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 ) |
| 163 | 162 127 | oveq12d | ⊢ ( 𝑥 = 𝑌 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 164 | 160 163 | oveq12d | ⊢ ( 𝑥 = 𝑌 → ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 165 | 148 156 164 14 | fvmptf | ⊢ ( ( 𝑌 ∈ 𝑆 ∧ ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ∈ V ) → ( 𝐻 ‘ 𝑌 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 166 | 16 147 165 | sylancl | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝑌 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 167 | 135 130 122 | subadd23d | ⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 168 | 146 166 167 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝑌 ) = ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ) |