This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of continuous functions in a subset. (Contributed by Mario Carneiro, 17-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfmpt2ss.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| cncfmpt2ss.2 | ⊢ 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) | ||
| cncfmpt2ss.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ 𝑆 ) ) | ||
| cncfmpt2ss.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝑋 –cn→ 𝑆 ) ) | ||
| cncfmpt2ss.5 | ⊢ 𝑆 ⊆ ℂ | ||
| cncfmpt2ss.6 | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 ) | ||
| Assertion | cncfmpt2ss | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝑋 –cn→ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfmpt2ss.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | cncfmpt2ss.2 | ⊢ 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) | |
| 3 | cncfmpt2ss.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ 𝑆 ) ) | |
| 4 | cncfmpt2ss.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝑋 –cn→ 𝑆 ) ) | |
| 5 | cncfmpt2ss.5 | ⊢ 𝑆 ⊆ ℂ | |
| 6 | cncfmpt2ss.6 | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 ) | |
| 7 | cncff | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ 𝑆 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑆 ) | |
| 8 | 3 7 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑆 ) |
| 9 | 8 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑆 ) |
| 10 | cncff | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝑋 –cn→ 𝑆 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ 𝑆 ) | |
| 11 | 4 10 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ 𝑆 ) |
| 12 | 11 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑆 ) |
| 13 | 9 12 6 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 ) |
| 14 | 13 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) : 𝑋 ⟶ 𝑆 ) |
| 15 | 2 | a1i | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 16 | ssid | ⊢ ℂ ⊆ ℂ | |
| 17 | cncfss | ⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑋 –cn→ 𝑆 ) ⊆ ( 𝑋 –cn→ ℂ ) ) | |
| 18 | 5 16 17 | mp2an | ⊢ ( 𝑋 –cn→ 𝑆 ) ⊆ ( 𝑋 –cn→ ℂ ) |
| 19 | 18 3 | sselid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| 20 | 18 4 | sselid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| 21 | 1 15 19 20 | cncfmpt2f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| 22 | cncfcdm | ⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝑋 –cn→ 𝑆 ) ↔ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) : 𝑋 ⟶ 𝑆 ) ) | |
| 23 | 5 21 22 | sylancr | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝑋 –cn→ 𝑆 ) ↔ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) : 𝑋 ⟶ 𝑆 ) ) |
| 24 | 14 23 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝑋 –cn→ 𝑆 ) ) |