This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Real closure of a derivative. (Contributed by Mario Carneiro, 18-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptrecl.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) | |
| dvmptrecl.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | ||
| dvmptrecl.v | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | ||
| dvmptrecl.b | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | ||
| Assertion | dvmptrecl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptrecl.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) | |
| 2 | dvmptrecl.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | |
| 3 | dvmptrecl.v | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | |
| 4 | dvmptrecl.b | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | |
| 5 | 2 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) : 𝑆 ⟶ ℝ ) |
| 6 | dvfre | ⊢ ( ( ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) : 𝑆 ⟶ ℝ ∧ 𝑆 ⊆ ℝ ) → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ⟶ ℝ ) | |
| 7 | 5 1 6 | syl2anc | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ⟶ ℝ ) |
| 8 | 4 | dmeqd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = dom ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
| 9 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐵 ∈ 𝑉 ) |
| 10 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝑆 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) = 𝑆 ) | |
| 11 | 9 10 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) = 𝑆 ) |
| 12 | 8 11 | eqtrd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = 𝑆 ) |
| 13 | 4 12 | feq12d | ⊢ ( 𝜑 → ( ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ⟶ ℝ ↔ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) : 𝑆 ⟶ ℝ ) ) |
| 14 | 7 13 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) : 𝑆 ⟶ ℝ ) |
| 15 | 14 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |