This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if x e. S |-> B is a decreasing function with antiderivative A converging to zero, then the difference between sum_ k e. ( M ... ( |_x ) ) B ( k ) and A ( x ) = S. u e. ( M , x ) B ( u ) _d u converges to a constant limit value, with the remainder term bounded by B ( x ) . (Contributed by Mario Carneiro, 18-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsum.s | ⊢ 𝑆 = ( 𝑇 (,) +∞ ) | |
| dvfsum.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| dvfsum.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| dvfsum.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| dvfsum.md | ⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) | ||
| dvfsum.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | ||
| dvfsum.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | ||
| dvfsum.b1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | ||
| dvfsum.b2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | ||
| dvfsum.b3 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | ||
| dvfsum.c | ⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) | ||
| dvfsumrlim.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ) ) → 𝐶 ≤ 𝐵 ) | ||
| dvfsumrlim.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) | ||
| dvfsumrlim.k | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 0 ) | ||
| Assertion | dvfsumrlim | ⊢ ( 𝜑 → 𝐺 ∈ dom ⇝𝑟 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsum.s | ⊢ 𝑆 = ( 𝑇 (,) +∞ ) | |
| 2 | dvfsum.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | dvfsum.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | dvfsum.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 5 | dvfsum.md | ⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) | |
| 6 | dvfsum.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | |
| 7 | dvfsum.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | |
| 8 | dvfsum.b1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | |
| 9 | dvfsum.b2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | |
| 10 | dvfsum.b3 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | |
| 11 | dvfsum.c | ⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) | |
| 12 | dvfsumrlim.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ) ) → 𝐶 ≤ 𝐵 ) | |
| 13 | dvfsumrlim.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) | |
| 14 | dvfsumrlim.k | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 0 ) | |
| 15 | ioossre | ⊢ ( 𝑇 (,) +∞ ) ⊆ ℝ | |
| 16 | 1 15 | eqsstri | ⊢ 𝑆 ⊆ ℝ |
| 17 | 16 | a1i | ⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
| 18 | 1 2 3 4 5 6 7 8 9 10 11 13 | dvfsumrlimf | ⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℝ ) |
| 19 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 20 | fss | ⊢ ( ( 𝐺 : 𝑆 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐺 : 𝑆 ⟶ ℂ ) | |
| 21 | 18 19 20 | sylancl | ⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) |
| 22 | 1 | supeq1i | ⊢ sup ( 𝑆 , ℝ* , < ) = sup ( ( 𝑇 (,) +∞ ) , ℝ* , < ) |
| 23 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 24 | 23 6 | sselid | ⊢ ( 𝜑 → 𝑇 ∈ ℝ* ) |
| 25 | 6 | renepnfd | ⊢ ( 𝜑 → 𝑇 ≠ +∞ ) |
| 26 | ioopnfsup | ⊢ ( ( 𝑇 ∈ ℝ* ∧ 𝑇 ≠ +∞ ) → sup ( ( 𝑇 (,) +∞ ) , ℝ* , < ) = +∞ ) | |
| 27 | 24 25 26 | syl2anc | ⊢ ( 𝜑 → sup ( ( 𝑇 (,) +∞ ) , ℝ* , < ) = +∞ ) |
| 28 | 22 27 | eqtrid | ⊢ ( 𝜑 → sup ( 𝑆 , ℝ* , < ) = +∞ ) |
| 29 | 8 14 | rlimmptrcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℂ ) |
| 30 | 29 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℂ ) |
| 31 | 30 17 | rlim0 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 0 ↔ ∀ 𝑒 ∈ ℝ+ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) ) ) |
| 32 | 14 31 | mpbid | ⊢ ( 𝜑 → ∀ 𝑒 ∈ ℝ+ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) ) |
| 33 | 16 | a1i | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → 𝑆 ⊆ ℝ ) |
| 34 | peano2re | ⊢ ( 𝑇 ∈ ℝ → ( 𝑇 + 1 ) ∈ ℝ ) | |
| 35 | 6 34 | syl | ⊢ ( 𝜑 → ( 𝑇 + 1 ) ∈ ℝ ) |
| 36 | 35 4 | ifcld | ⊢ ( 𝜑 → if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) ∈ ℝ ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) ∈ ℝ ) |
| 38 | rexico | ⊢ ( ( 𝑆 ⊆ ℝ ∧ if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) ∈ ℝ ) → ( ∃ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) ↔ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) ) ) | |
| 39 | 33 37 38 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( ∃ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) ↔ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) ) ) |
| 40 | elicopnf | ⊢ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) ∈ ℝ → ( 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ↔ ( 𝑐 ∈ ℝ ∧ if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) ≤ 𝑐 ) ) ) | |
| 41 | 36 40 | syl | ⊢ ( 𝜑 → ( 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ↔ ( 𝑐 ∈ ℝ ∧ if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) ≤ 𝑐 ) ) ) |
| 42 | 41 | simprbda | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → 𝑐 ∈ ℝ ) |
| 43 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → 𝑇 ∈ ℝ ) |
| 44 | 43 34 | syl | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → ( 𝑇 + 1 ) ∈ ℝ ) |
| 45 | 43 | ltp1d | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → 𝑇 < ( 𝑇 + 1 ) ) |
| 46 | 41 | simplbda | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) ≤ 𝑐 ) |
| 47 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → 𝐷 ∈ ℝ ) |
| 48 | maxle | ⊢ ( ( 𝐷 ∈ ℝ ∧ ( 𝑇 + 1 ) ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) ≤ 𝑐 ↔ ( 𝐷 ≤ 𝑐 ∧ ( 𝑇 + 1 ) ≤ 𝑐 ) ) ) | |
| 49 | 47 44 42 48 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) ≤ 𝑐 ↔ ( 𝐷 ≤ 𝑐 ∧ ( 𝑇 + 1 ) ≤ 𝑐 ) ) ) |
| 50 | 46 49 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → ( 𝐷 ≤ 𝑐 ∧ ( 𝑇 + 1 ) ≤ 𝑐 ) ) |
| 51 | 50 | simprd | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → ( 𝑇 + 1 ) ≤ 𝑐 ) |
| 52 | 43 44 42 45 51 | ltletrd | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → 𝑇 < 𝑐 ) |
| 53 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → 𝑇 ∈ ℝ* ) |
| 54 | elioopnf | ⊢ ( 𝑇 ∈ ℝ* → ( 𝑐 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑐 ∈ ℝ ∧ 𝑇 < 𝑐 ) ) ) | |
| 55 | 53 54 | syl | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → ( 𝑐 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑐 ∈ ℝ ∧ 𝑇 < 𝑐 ) ) ) |
| 56 | 42 52 55 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → 𝑐 ∈ ( 𝑇 (,) +∞ ) ) |
| 57 | 56 1 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → 𝑐 ∈ 𝑆 ) |
| 58 | 50 | simpld | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → 𝐷 ≤ 𝑐 ) |
| 59 | 57 58 | jca | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) |
| 60 | 59 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) |
| 61 | simprrl | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ) → 𝑐 ∈ 𝑆 ) | |
| 62 | 61 | adantrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑐 ∈ 𝑆 ) |
| 63 | 16 62 | sselid | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑐 ∈ ℝ ) |
| 64 | 63 | leidd | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑐 ≤ 𝑐 ) |
| 65 | nfv | ⊢ Ⅎ 𝑥 𝑐 ≤ 𝑐 | |
| 66 | nfcv | ⊢ Ⅎ 𝑥 abs | |
| 67 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑐 / 𝑥 ⦌ 𝐵 | |
| 68 | 66 67 | nffv | ⊢ Ⅎ 𝑥 ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) |
| 69 | nfcv | ⊢ Ⅎ 𝑥 < | |
| 70 | nfcv | ⊢ Ⅎ 𝑥 𝑒 | |
| 71 | 68 69 70 | nfbr | ⊢ Ⅎ 𝑥 ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) < 𝑒 |
| 72 | 65 71 | nfim | ⊢ Ⅎ 𝑥 ( 𝑐 ≤ 𝑐 → ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) < 𝑒 ) |
| 73 | breq2 | ⊢ ( 𝑥 = 𝑐 → ( 𝑐 ≤ 𝑥 ↔ 𝑐 ≤ 𝑐 ) ) | |
| 74 | csbeq1a | ⊢ ( 𝑥 = 𝑐 → 𝐵 = ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) | |
| 75 | 74 | fveq2d | ⊢ ( 𝑥 = 𝑐 → ( abs ‘ 𝐵 ) = ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) ) |
| 76 | 75 | breq1d | ⊢ ( 𝑥 = 𝑐 → ( ( abs ‘ 𝐵 ) < 𝑒 ↔ ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) < 𝑒 ) ) |
| 77 | 73 76 | imbi12d | ⊢ ( 𝑥 = 𝑐 → ( ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) ↔ ( 𝑐 ≤ 𝑐 → ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) < 𝑒 ) ) ) |
| 78 | 72 77 | rspc | ⊢ ( 𝑐 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( 𝑐 ≤ 𝑐 → ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) < 𝑒 ) ) ) |
| 79 | 62 78 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( 𝑐 ≤ 𝑐 → ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) < 𝑒 ) ) ) |
| 80 | 64 79 | mpid | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) < 𝑒 ) ) |
| 81 | 17 7 8 10 | dvmptrecl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |
| 82 | 81 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝐵 ∈ ℝ ) |
| 83 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | dvfsumrlimge0 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 0 ≤ 𝐵 ) |
| 84 | elrege0 | ⊢ ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) | |
| 85 | 82 83 84 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 86 | 85 | expr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐷 ≤ 𝑥 → 𝐵 ∈ ( 0 [,) +∞ ) ) ) |
| 87 | 86 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( 𝐷 ≤ 𝑥 → 𝐵 ∈ ( 0 [,) +∞ ) ) ) |
| 88 | 87 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑆 ( 𝐷 ≤ 𝑥 → 𝐵 ∈ ( 0 [,) +∞ ) ) ) |
| 89 | simprrr | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ) → 𝐷 ≤ 𝑐 ) | |
| 90 | 89 | adantrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝐷 ≤ 𝑐 ) |
| 91 | nfv | ⊢ Ⅎ 𝑥 𝐷 ≤ 𝑐 | |
| 92 | 67 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) |
| 93 | 91 92 | nfim | ⊢ Ⅎ 𝑥 ( 𝐷 ≤ 𝑐 → ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 94 | breq2 | ⊢ ( 𝑥 = 𝑐 → ( 𝐷 ≤ 𝑥 ↔ 𝐷 ≤ 𝑐 ) ) | |
| 95 | 74 | eleq1d | ⊢ ( 𝑥 = 𝑐 → ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) ) |
| 96 | 94 95 | imbi12d | ⊢ ( 𝑥 = 𝑐 → ( ( 𝐷 ≤ 𝑥 → 𝐵 ∈ ( 0 [,) +∞ ) ) ↔ ( 𝐷 ≤ 𝑐 → ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) ) ) |
| 97 | 93 96 | rspc | ⊢ ( 𝑐 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 ( 𝐷 ≤ 𝑥 → 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 𝐷 ≤ 𝑐 → ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) ) ) |
| 98 | 62 88 90 97 | syl3c | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 99 | elrege0 | ⊢ ( ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 0 ≤ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) ) | |
| 100 | 98 99 | sylib | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 0 ≤ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) ) |
| 101 | absid | ⊢ ( ( ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 0 ≤ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) → ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) = ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) | |
| 102 | 100 101 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) = ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) |
| 103 | 102 | breq1d | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) < 𝑒 ↔ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 < 𝑒 ) ) |
| 104 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑀 ∈ ℤ ) |
| 105 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝐷 ∈ ℝ ) |
| 106 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑀 ≤ ( 𝐷 + 1 ) ) |
| 107 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑇 ∈ ℝ ) |
| 108 | 7 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
| 109 | 8 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
| 110 | 9 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 111 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
| 112 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 113 | 112 | a1i | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → +∞ ∈ ℝ* ) |
| 114 | 3simpa | ⊢ ( ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ +∞ ) → ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ) ) | |
| 115 | 114 12 | syl3an3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ +∞ ) ) → 𝐶 ≤ 𝐵 ) |
| 116 | 115 | 3adant1r | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ +∞ ) ) → 𝐶 ≤ 𝐵 ) |
| 117 | 83 | 3adantr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ +∞ ) ) → 0 ≤ 𝐵 ) |
| 118 | 117 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ +∞ ) ) → 0 ≤ 𝐵 ) |
| 119 | simprrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑦 ∈ 𝑆 ) | |
| 120 | simprrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑐 ≤ 𝑦 ) | |
| 121 | 16 23 | sstri | ⊢ 𝑆 ⊆ ℝ* |
| 122 | 121 119 | sselid | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑦 ∈ ℝ* ) |
| 123 | pnfge | ⊢ ( 𝑦 ∈ ℝ* → 𝑦 ≤ +∞ ) | |
| 124 | 122 123 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑦 ≤ +∞ ) |
| 125 | 1 2 104 105 106 107 108 109 110 111 11 113 116 13 118 62 119 90 120 124 | dvfsumlem4 | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) ≤ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) |
| 126 | 21 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝐺 : 𝑆 ⟶ ℂ ) |
| 127 | 126 119 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ℂ ) |
| 128 | 126 62 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( 𝐺 ‘ 𝑐 ) ∈ ℂ ) |
| 129 | 127 128 | subcld | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ∈ ℂ ) |
| 130 | 129 | abscld | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) ∈ ℝ ) |
| 131 | 100 | simpld | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 132 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑒 ∈ ℝ+ ) | |
| 133 | 132 | rpred | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑒 ∈ ℝ ) |
| 134 | lelttr | ⊢ ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) ∈ ℝ ∧ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑒 ∈ ℝ ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) ≤ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∧ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 < 𝑒 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) | |
| 135 | 130 131 133 134 | syl3anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) ≤ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∧ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 < 𝑒 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) |
| 136 | 125 135 | mpand | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ⦋ 𝑐 / 𝑥 ⦌ 𝐵 < 𝑒 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) |
| 137 | 103 136 | sylbid | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) < 𝑒 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) |
| 138 | 80 137 | syld | ⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) |
| 139 | 138 | anassrs | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) |
| 140 | 139 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑐 ≤ 𝑦 → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) |
| 141 | 140 | com23 | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) |
| 142 | 141 | ralrimdva | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) |
| 143 | 142 61 | jctild | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( 𝑐 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) ) |
| 144 | 143 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( 𝑐 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) ) |
| 145 | 60 144 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( 𝑐 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) ) |
| 146 | 145 | expimpd | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( ( 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) ) → ( 𝑐 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) ) |
| 147 | 146 | reximdv2 | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( ∃ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ∃ 𝑐 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) |
| 148 | 39 147 | sylbird | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ∃ 𝑐 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) |
| 149 | 148 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑒 ∈ ℝ+ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ∀ 𝑒 ∈ ℝ+ ∃ 𝑐 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) |
| 150 | 32 149 | mpd | ⊢ ( 𝜑 → ∀ 𝑒 ∈ ℝ+ ∃ 𝑐 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) |
| 151 | 17 21 28 150 | caucvgr | ⊢ ( 𝜑 → 𝐺 ∈ dom ⇝𝑟 ) |