This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A ( x ) , C ( x ) are differentiable functions and A<_ C` , then for x <_ y , A ( y ) - A ( x ) <_ C ( y ) - C ( x ) ` . (Contributed by Mario Carneiro, 16-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvle.m | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| dvle.n | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) | ||
| dvle.a | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) | ||
| dvle.b | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) | ||
| dvle.c | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) | ||
| dvle.d | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐷 ) ) | ||
| dvle.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ≤ 𝐷 ) | ||
| dvle.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑀 [,] 𝑁 ) ) | ||
| dvle.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑀 [,] 𝑁 ) ) | ||
| dvle.l | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | ||
| dvle.p | ⊢ ( 𝑥 = 𝑋 → 𝐴 = 𝑃 ) | ||
| dvle.q | ⊢ ( 𝑥 = 𝑋 → 𝐶 = 𝑄 ) | ||
| dvle.r | ⊢ ( 𝑥 = 𝑌 → 𝐴 = 𝑅 ) | ||
| dvle.s | ⊢ ( 𝑥 = 𝑌 → 𝐶 = 𝑆 ) | ||
| Assertion | dvle | ⊢ ( 𝜑 → ( 𝑅 − 𝑃 ) ≤ ( 𝑆 − 𝑄 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvle.m | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 2 | dvle.n | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) | |
| 3 | dvle.a | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) | |
| 4 | dvle.b | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) | |
| 5 | dvle.c | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) | |
| 6 | dvle.d | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐷 ) ) | |
| 7 | dvle.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ≤ 𝐷 ) | |
| 8 | dvle.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑀 [,] 𝑁 ) ) | |
| 9 | dvle.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑀 [,] 𝑁 ) ) | |
| 10 | dvle.l | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | |
| 11 | dvle.p | ⊢ ( 𝑥 = 𝑋 → 𝐴 = 𝑃 ) | |
| 12 | dvle.q | ⊢ ( 𝑥 = 𝑋 → 𝐶 = 𝑄 ) | |
| 13 | dvle.r | ⊢ ( 𝑥 = 𝑌 → 𝐴 = 𝑅 ) | |
| 14 | dvle.s | ⊢ ( 𝑥 = 𝑌 → 𝐶 = 𝑆 ) | |
| 15 | 13 | eleq1d | ⊢ ( 𝑥 = 𝑌 → ( 𝐴 ∈ ℝ ↔ 𝑅 ∈ ℝ ) ) |
| 16 | cncff | ⊢ ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) | |
| 17 | 3 16 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
| 18 | eqid | ⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) = ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) | |
| 19 | 18 | fmpt | ⊢ ( ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ↔ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
| 20 | 17 19 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ) |
| 21 | 15 20 9 | rspcdva | ⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 22 | 14 | eleq1d | ⊢ ( 𝑥 = 𝑌 → ( 𝐶 ∈ ℝ ↔ 𝑆 ∈ ℝ ) ) |
| 23 | cncff | ⊢ ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) | |
| 24 | 5 23 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
| 25 | eqid | ⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) = ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) | |
| 26 | 25 | fmpt | ⊢ ( ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐶 ∈ ℝ ↔ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
| 27 | 24 26 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐶 ∈ ℝ ) |
| 28 | 22 27 9 | rspcdva | ⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 29 | 12 | eleq1d | ⊢ ( 𝑥 = 𝑋 → ( 𝐶 ∈ ℝ ↔ 𝑄 ∈ ℝ ) ) |
| 30 | 29 27 8 | rspcdva | ⊢ ( 𝜑 → 𝑄 ∈ ℝ ) |
| 31 | 28 30 | resubcld | ⊢ ( 𝜑 → ( 𝑆 − 𝑄 ) ∈ ℝ ) |
| 32 | 11 | eleq1d | ⊢ ( 𝑥 = 𝑋 → ( 𝐴 ∈ ℝ ↔ 𝑃 ∈ ℝ ) ) |
| 33 | 32 20 8 | rspcdva | ⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
| 34 | 21 | recnd | ⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 35 | 30 | recnd | ⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
| 36 | 28 | recnd | ⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
| 37 | 35 36 | subcld | ⊢ ( 𝜑 → ( 𝑄 − 𝑆 ) ∈ ℂ ) |
| 38 | 34 37 | addcomd | ⊢ ( 𝜑 → ( 𝑅 + ( 𝑄 − 𝑆 ) ) = ( ( 𝑄 − 𝑆 ) + 𝑅 ) ) |
| 39 | 34 36 35 | subsub2d | ⊢ ( 𝜑 → ( 𝑅 − ( 𝑆 − 𝑄 ) ) = ( 𝑅 + ( 𝑄 − 𝑆 ) ) ) |
| 40 | 35 36 34 | subsubd | ⊢ ( 𝜑 → ( 𝑄 − ( 𝑆 − 𝑅 ) ) = ( ( 𝑄 − 𝑆 ) + 𝑅 ) ) |
| 41 | 38 39 40 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑅 − ( 𝑆 − 𝑄 ) ) = ( 𝑄 − ( 𝑆 − 𝑅 ) ) ) |
| 42 | 28 21 | resubcld | ⊢ ( 𝜑 → ( 𝑆 − 𝑅 ) ∈ ℝ ) |
| 43 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 44 | 43 | subcn | ⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 45 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 46 | resubcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐶 − 𝐴 ) ∈ ℝ ) | |
| 47 | 43 44 5 3 45 46 | cncfmpt2ss | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
| 48 | 45 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 49 | iccssre | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) | |
| 50 | 1 2 49 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) |
| 51 | 24 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐶 ∈ ℝ ) |
| 52 | 17 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐴 ∈ ℝ ) |
| 53 | 51 52 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝐶 − 𝐴 ) ∈ ℝ ) |
| 54 | 53 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝐶 − 𝐴 ) ∈ ℂ ) |
| 55 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 56 | iccntr | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑀 [,] 𝑁 ) ) = ( 𝑀 (,) 𝑁 ) ) | |
| 57 | 1 2 56 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑀 [,] 𝑁 ) ) = ( 𝑀 (,) 𝑁 ) ) |
| 58 | 48 50 54 55 43 57 | dvmptntr | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ) = ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ) ) |
| 59 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 60 | 59 | a1i | ⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 61 | ioossicc | ⊢ ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) | |
| 62 | 61 | sseli | ⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) → 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 63 | 51 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐶 ∈ ℂ ) |
| 64 | 62 63 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐶 ∈ ℂ ) |
| 65 | lerel | ⊢ Rel ≤ | |
| 66 | 65 | brrelex2i | ⊢ ( 𝐵 ≤ 𝐷 → 𝐷 ∈ V ) |
| 67 | 7 66 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐷 ∈ V ) |
| 68 | 52 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 69 | 62 68 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 70 | 65 | brrelex1i | ⊢ ( 𝐵 ≤ 𝐷 → 𝐵 ∈ V ) |
| 71 | 7 70 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ V ) |
| 72 | 60 64 67 6 69 71 4 | dvmptsub | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ ( 𝐷 − 𝐵 ) ) ) |
| 73 | 58 72 | eqtrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ ( 𝐷 − 𝐵 ) ) ) |
| 74 | 62 51 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐶 ∈ ℝ ) |
| 75 | 74 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
| 76 | ioossre | ⊢ ( 𝑀 (,) 𝑁 ) ⊆ ℝ | |
| 77 | dvfre | ⊢ ( ( ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ∧ ( 𝑀 (,) 𝑁 ) ⊆ ℝ ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) ⟶ ℝ ) | |
| 78 | 75 76 77 | sylancl | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) ⟶ ℝ ) |
| 79 | 6 | dmeqd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) = dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐷 ) ) |
| 80 | 67 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐷 ∈ V ) |
| 81 | dmmptg | ⊢ ( ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐷 ∈ V → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐷 ) = ( 𝑀 (,) 𝑁 ) ) | |
| 82 | 80 81 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐷 ) = ( 𝑀 (,) 𝑁 ) ) |
| 83 | 79 82 | eqtrd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) = ( 𝑀 (,) 𝑁 ) ) |
| 84 | 6 83 | feq12d | ⊢ ( 𝜑 → ( ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) ⟶ ℝ ↔ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐷 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) ) |
| 85 | 78 84 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐷 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
| 86 | 85 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐷 ∈ ℝ ) |
| 87 | 62 52 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐴 ∈ ℝ ) |
| 88 | 87 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
| 89 | dvfre | ⊢ ( ( ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ∧ ( 𝑀 (,) 𝑁 ) ⊆ ℝ ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ) | |
| 90 | 88 76 89 | sylancl | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ) |
| 91 | 4 | dmeqd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) |
| 92 | 71 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ V ) |
| 93 | dmmptg | ⊢ ( ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ V → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑀 (,) 𝑁 ) ) | |
| 94 | 92 93 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑀 (,) 𝑁 ) ) |
| 95 | 91 94 | eqtrd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑀 (,) 𝑁 ) ) |
| 96 | 4 95 | feq12d | ⊢ ( 𝜑 → ( ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ↔ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) ) |
| 97 | 90 96 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
| 98 | 97 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ ℝ ) |
| 99 | 86 98 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → ( 𝐷 − 𝐵 ) ∈ ℝ ) |
| 100 | 86 98 | subge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → ( 0 ≤ ( 𝐷 − 𝐵 ) ↔ 𝐵 ≤ 𝐷 ) ) |
| 101 | 7 100 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 0 ≤ ( 𝐷 − 𝐵 ) ) |
| 102 | elrege0 | ⊢ ( ( 𝐷 − 𝐵 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐷 − 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐷 − 𝐵 ) ) ) | |
| 103 | 99 101 102 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → ( 𝐷 − 𝐵 ) ∈ ( 0 [,) +∞ ) ) |
| 104 | 73 103 | fmpt3d | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ) : ( 𝑀 (,) 𝑁 ) ⟶ ( 0 [,) +∞ ) ) |
| 105 | 1 2 47 104 8 9 10 | dvge0 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ‘ 𝑋 ) ≤ ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ‘ 𝑌 ) ) |
| 106 | 12 11 | oveq12d | ⊢ ( 𝑥 = 𝑋 → ( 𝐶 − 𝐴 ) = ( 𝑄 − 𝑃 ) ) |
| 107 | eqid | ⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) | |
| 108 | ovex | ⊢ ( 𝐶 − 𝐴 ) ∈ V | |
| 109 | 106 107 108 | fvmpt3i | ⊢ ( 𝑋 ∈ ( 𝑀 [,] 𝑁 ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ‘ 𝑋 ) = ( 𝑄 − 𝑃 ) ) |
| 110 | 8 109 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ‘ 𝑋 ) = ( 𝑄 − 𝑃 ) ) |
| 111 | 14 13 | oveq12d | ⊢ ( 𝑥 = 𝑌 → ( 𝐶 − 𝐴 ) = ( 𝑆 − 𝑅 ) ) |
| 112 | 111 107 108 | fvmpt3i | ⊢ ( 𝑌 ∈ ( 𝑀 [,] 𝑁 ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ‘ 𝑌 ) = ( 𝑆 − 𝑅 ) ) |
| 113 | 9 112 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ‘ 𝑌 ) = ( 𝑆 − 𝑅 ) ) |
| 114 | 105 110 113 | 3brtr3d | ⊢ ( 𝜑 → ( 𝑄 − 𝑃 ) ≤ ( 𝑆 − 𝑅 ) ) |
| 115 | 30 33 42 114 | subled | ⊢ ( 𝜑 → ( 𝑄 − ( 𝑆 − 𝑅 ) ) ≤ 𝑃 ) |
| 116 | 41 115 | eqbrtrd | ⊢ ( 𝜑 → ( 𝑅 − ( 𝑆 − 𝑄 ) ) ≤ 𝑃 ) |
| 117 | 21 31 33 116 | subled | ⊢ ( 𝜑 → ( 𝑅 − 𝑃 ) ≤ ( 𝑆 − 𝑄 ) ) |