This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsumle.m | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| dvfsumle.a | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) | ||
| dvfsumle.v | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ 𝑉 ) | ||
| dvfsumle.b | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) | ||
| dvfsumle.c | ⊢ ( 𝑥 = 𝑀 → 𝐴 = 𝐶 ) | ||
| dvfsumle.d | ⊢ ( 𝑥 = 𝑁 → 𝐴 = 𝐷 ) | ||
| dvfsumle.x | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑋 ∈ ℝ ) | ||
| dvfsumle.l | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) ) → 𝑋 ≤ 𝐵 ) | ||
| Assertion | dvfsumle | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ≤ ( 𝐷 − 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsumle.m | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | dvfsumle.a | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) | |
| 3 | dvfsumle.v | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ 𝑉 ) | |
| 4 | dvfsumle.b | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) | |
| 5 | dvfsumle.c | ⊢ ( 𝑥 = 𝑀 → 𝐴 = 𝐶 ) | |
| 6 | dvfsumle.d | ⊢ ( 𝑥 = 𝑁 → 𝐴 = 𝐷 ) | |
| 7 | dvfsumle.x | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑋 ∈ ℝ ) | |
| 8 | dvfsumle.l | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) ) → 𝑋 ≤ 𝐵 ) | |
| 9 | fzofi | ⊢ ( 𝑀 ..^ 𝑁 ) ∈ Fin | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ( 𝑀 ..^ 𝑁 ) ∈ Fin ) |
| 11 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 12 | 1 11 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 13 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 14 | 1 13 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 15 | fzval2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 [,] 𝑁 ) ∩ ℤ ) ) | |
| 16 | 12 14 15 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 [,] 𝑁 ) ∩ ℤ ) ) |
| 17 | inss1 | ⊢ ( ( 𝑀 [,] 𝑁 ) ∩ ℤ ) ⊆ ( 𝑀 [,] 𝑁 ) | |
| 18 | 16 17 | eqsstrdi | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) ) |
| 19 | 18 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑦 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 20 | cncff | ⊢ ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) | |
| 21 | 2 20 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
| 22 | eqid | ⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) = ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) | |
| 23 | 22 | fmpt | ⊢ ( ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ↔ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
| 24 | 21 23 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ) |
| 25 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 | |
| 26 | 25 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ |
| 27 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) | |
| 28 | 27 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ ℝ ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
| 29 | 26 28 | rspc | ⊢ ( 𝑦 ∈ ( 𝑀 [,] 𝑁 ) → ( ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
| 30 | 24 29 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑀 [,] 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 31 | 19 30 | syldan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 32 | 31 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 33 | fzofzp1 | ⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) | |
| 34 | csbeq1 | ⊢ ( 𝑦 = ( 𝑘 + 1 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 ) | |
| 35 | 34 | eleq1d | ⊢ ( 𝑦 = ( 𝑘 + 1 ) → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ↔ ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
| 36 | 35 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 37 | 32 33 36 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 38 | elfzofz | ⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 39 | csbeq1 | ⊢ ( 𝑦 = 𝑘 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) | |
| 40 | 39 | eleq1d | ⊢ ( 𝑦 = 𝑘 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ↔ ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
| 41 | 40 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 42 | 32 38 41 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 43 | 37 42 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) |
| 44 | elfzoelz | ⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑘 ∈ ℤ ) | |
| 45 | 44 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ℤ ) |
| 46 | 45 | zred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ℝ ) |
| 47 | 46 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ℂ ) |
| 48 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 49 | pncan2 | ⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 𝑘 ) = 1 ) | |
| 50 | 47 48 49 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑘 + 1 ) − 𝑘 ) = 1 ) |
| 51 | 50 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑋 · ( ( 𝑘 + 1 ) − 𝑘 ) ) = ( 𝑋 · 1 ) ) |
| 52 | 7 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑋 ∈ ℂ ) |
| 53 | peano2re | ⊢ ( 𝑘 ∈ ℝ → ( 𝑘 + 1 ) ∈ ℝ ) | |
| 54 | 46 53 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 55 | 54 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 56 | 52 55 47 | subdid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑋 · ( ( 𝑘 + 1 ) − 𝑘 ) ) = ( ( 𝑋 · ( 𝑘 + 1 ) ) − ( 𝑋 · 𝑘 ) ) ) |
| 57 | 52 | mulridd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑋 · 1 ) = 𝑋 ) |
| 58 | 51 56 57 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑋 · ( 𝑘 + 1 ) ) − ( 𝑋 · 𝑘 ) ) = 𝑋 ) |
| 59 | 52 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) → 𝑋 ∈ ℂ ) |
| 60 | 46 54 | iccssred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ℝ ) |
| 61 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 62 | 60 61 | sstrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ℂ ) |
| 63 | 62 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ℂ ) |
| 64 | ovmpot | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( 𝑋 · 𝑦 ) ) | |
| 65 | 59 63 64 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) → ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( 𝑋 · 𝑦 ) ) |
| 66 | 65 | eqeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) → ( 𝑧 = ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ↔ 𝑧 = ( 𝑋 · 𝑦 ) ) ) |
| 67 | 66 | pm5.32da | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ∧ 𝑧 = ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ↔ ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ∧ 𝑧 = ( 𝑋 · 𝑦 ) ) ) ) |
| 68 | 67 | opabbidv | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ∧ 𝑧 = ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ∧ 𝑧 = ( 𝑋 · 𝑦 ) ) } ) |
| 69 | df-mpt | ⊢ ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 𝑦 ) ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ∧ 𝑧 = ( 𝑋 · 𝑦 ) ) } | |
| 70 | 68 69 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ∧ 𝑧 = ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 𝑦 ) ) ) |
| 71 | df-mpt | ⊢ ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ∧ 𝑧 = ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } | |
| 72 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 73 | 72 | mpomulcn | ⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 74 | 61 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ℝ ⊆ ℂ ) |
| 75 | cncfmptc | ⊢ ( ( 𝑋 ∈ ℝ ∧ ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝑋 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) | |
| 76 | 7 62 74 75 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝑋 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
| 77 | cncfmptid | ⊢ ( ( ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝑦 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) | |
| 78 | 60 61 77 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝑦 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
| 79 | simpl | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑋 ∈ ℝ ) | |
| 80 | 79 | recnd | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑋 ∈ ℂ ) |
| 81 | simpr | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 82 | 81 | recnd | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 83 | 64 | eqcomd | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑋 · 𝑦 ) = ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) |
| 84 | 80 82 83 | syl2anc | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑋 · 𝑦 ) = ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) |
| 85 | remulcl | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑋 · 𝑦 ) ∈ ℝ ) | |
| 86 | 84 85 | eqeltrrd | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ ℝ ) |
| 87 | 72 73 76 78 61 86 | cncfmpt2ss | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
| 88 | 71 87 | eqeltrrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ∧ 𝑧 = ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
| 89 | 70 88 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 𝑦 ) ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
| 90 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 91 | 90 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ℝ ∈ { ℝ , ℂ } ) |
| 92 | 12 | zred | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 93 | 92 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ∈ ℝ ) |
| 94 | 93 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ∈ ℝ* ) |
| 95 | elfzole1 | ⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ≤ 𝑘 ) | |
| 96 | 95 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ≤ 𝑘 ) |
| 97 | iooss1 | ⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝑘 ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) ( 𝑘 + 1 ) ) ) | |
| 98 | 94 96 97 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) ( 𝑘 + 1 ) ) ) |
| 99 | 14 | zred | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 100 | 99 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ ) |
| 101 | 100 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ* ) |
| 102 | 33 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 103 | elfzle2 | ⊢ ( ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝑘 + 1 ) ≤ 𝑁 ) | |
| 104 | 102 103 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ≤ 𝑁 ) |
| 105 | iooss2 | ⊢ ( ( 𝑁 ∈ ℝ* ∧ ( 𝑘 + 1 ) ≤ 𝑁 ) → ( 𝑀 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) 𝑁 ) ) | |
| 106 | 101 104 105 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) 𝑁 ) ) |
| 107 | 98 106 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) 𝑁 ) ) |
| 108 | ioossicc | ⊢ ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) | |
| 109 | 92 99 | iccssred | ⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) |
| 110 | 109 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) |
| 111 | 110 61 | sstrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 [,] 𝑁 ) ⊆ ℂ ) |
| 112 | 108 111 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 (,) 𝑁 ) ⊆ ℂ ) |
| 113 | 107 112 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ℂ ) |
| 114 | 113 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ℂ ) |
| 115 | 1cnd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 1 ∈ ℂ ) | |
| 116 | 74 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 117 | 1cnd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℂ ) | |
| 118 | 91 | dvmptid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ℝ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℝ ↦ 1 ) ) |
| 119 | ioossre | ⊢ ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ℝ | |
| 120 | 119 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ℝ ) |
| 121 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 122 | iooretop | ⊢ ( 𝑘 (,) ( 𝑘 + 1 ) ) ∈ ( topGen ‘ ran (,) ) | |
| 123 | 122 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ∈ ( topGen ‘ ran (,) ) ) |
| 124 | 91 116 117 118 120 121 72 123 | dvmptres | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ 𝑦 ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ 1 ) ) |
| 125 | 91 114 115 124 52 | dvmptcmul | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 1 ) ) ) |
| 126 | 57 | mpteq2dv | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 1 ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ 𝑋 ) ) |
| 127 | 125 126 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ 𝑋 ) ) |
| 128 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 129 | 128 25 27 | cbvmpt | ⊢ ( 𝑥 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝐴 ) = ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
| 130 | iccss | ⊢ ( ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝑀 ≤ 𝑘 ∧ ( 𝑘 + 1 ) ≤ 𝑁 ) ) → ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ( 𝑀 [,] 𝑁 ) ) | |
| 131 | 93 100 96 104 130 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ( 𝑀 [,] 𝑁 ) ) |
| 132 | 131 | resmptd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ↾ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) = ( 𝑥 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝐴 ) ) |
| 133 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
| 134 | rescncf | ⊢ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ( 𝑀 [,] 𝑁 ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ↾ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) ) | |
| 135 | 131 133 134 | sylc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ↾ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
| 136 | 132 135 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝐴 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
| 137 | 129 136 | eqeltrrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
| 138 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
| 139 | 138 23 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ) |
| 140 | 108 | sseli | ⊢ ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) → 𝑦 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 141 | 29 | impcom | ⊢ ( ( ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ∧ 𝑦 ∈ ( 𝑀 [,] 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 142 | 139 140 141 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 143 | 142 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 144 | 108 | sseli | ⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) → 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 145 | 21 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐴 ∈ ℝ ) |
| 146 | 145 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐴 ∈ ℝ ) |
| 147 | 144 146 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐴 ∈ ℝ ) |
| 148 | 147 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
| 149 | ioossre | ⊢ ( 𝑀 (,) 𝑁 ) ⊆ ℝ | |
| 150 | dvfre | ⊢ ( ( ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ∧ ( 𝑀 (,) 𝑁 ) ⊆ ℝ ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ) | |
| 151 | 148 149 150 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ) |
| 152 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) |
| 153 | 152 | dmeqd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) |
| 154 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ 𝑉 ) |
| 155 | 154 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ 𝑉 ) |
| 156 | dmmptg | ⊢ ( ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑀 (,) 𝑁 ) ) | |
| 157 | 155 156 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑀 (,) 𝑁 ) ) |
| 158 | 153 157 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑀 (,) 𝑁 ) ) |
| 159 | 152 158 | feq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ↔ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) ) |
| 160 | 151 159 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
| 161 | eqid | ⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) | |
| 162 | 161 | fmpt | ⊢ ( ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ ℝ ↔ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
| 163 | 160 162 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ ℝ ) |
| 164 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 | |
| 165 | 164 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ |
| 166 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) | |
| 167 | 166 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ ℝ ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 168 | 165 167 | rspc | ⊢ ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) → ( ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ ℝ → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 169 | 163 168 | mpan9 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 170 | 128 25 27 | cbvmpt | ⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) = ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
| 171 | 170 | oveq2i | ⊢ ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( ℝ D ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) |
| 172 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 173 | 172 164 166 | cbvmpt | ⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 174 | 152 171 173 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 175 | 91 143 169 174 107 121 72 123 | dvmptres | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 176 | 8 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 𝑋 ≤ 𝐵 ) |
| 177 | 176 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) 𝑋 ≤ 𝐵 ) |
| 178 | nfcv | ⊢ Ⅎ 𝑥 𝑋 | |
| 179 | nfcv | ⊢ Ⅎ 𝑥 ≤ | |
| 180 | 178 179 164 | nfbr | ⊢ Ⅎ 𝑥 𝑋 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 181 | 166 | breq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑋 ≤ 𝐵 ↔ 𝑋 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 182 | 180 181 | rspc | ⊢ ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) → ( ∀ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) 𝑋 ≤ 𝐵 → 𝑋 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 183 | 177 182 | mpan9 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 𝑋 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 184 | 46 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ℝ* ) |
| 185 | 54 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ℝ* ) |
| 186 | 46 | lep1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ≤ ( 𝑘 + 1 ) ) |
| 187 | lbicc2 | ⊢ ( ( 𝑘 ∈ ℝ* ∧ ( 𝑘 + 1 ) ∈ ℝ* ∧ 𝑘 ≤ ( 𝑘 + 1 ) ) → 𝑘 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) | |
| 188 | 184 185 186 187 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) |
| 189 | ubicc2 | ⊢ ( ( 𝑘 ∈ ℝ* ∧ ( 𝑘 + 1 ) ∈ ℝ* ∧ 𝑘 ≤ ( 𝑘 + 1 ) ) → ( 𝑘 + 1 ) ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) | |
| 190 | 184 185 186 189 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) |
| 191 | oveq2 | ⊢ ( 𝑦 = 𝑘 → ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑘 ) ) | |
| 192 | oveq2 | ⊢ ( 𝑦 = ( 𝑘 + 1 ) → ( 𝑋 · 𝑦 ) = ( 𝑋 · ( 𝑘 + 1 ) ) ) | |
| 193 | 46 54 89 127 137 175 183 188 190 186 191 39 192 34 | dvle | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑋 · ( 𝑘 + 1 ) ) − ( 𝑋 · 𝑘 ) ) ≤ ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) ) |
| 194 | 58 193 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑋 ≤ ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) ) |
| 195 | 10 7 43 194 | fsumle | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ≤ Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) ) |
| 196 | vex | ⊢ 𝑦 ∈ V | |
| 197 | 196 | a1i | ⊢ ( 𝑦 = 𝑀 → 𝑦 ∈ V ) |
| 198 | eqeq2 | ⊢ ( 𝑦 = 𝑀 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑀 ) ) | |
| 199 | 198 | biimpa | ⊢ ( ( 𝑦 = 𝑀 ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑀 ) |
| 200 | 199 5 | syl | ⊢ ( ( 𝑦 = 𝑀 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐶 ) |
| 201 | 197 200 | csbied | ⊢ ( 𝑦 = 𝑀 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐶 ) |
| 202 | 196 | a1i | ⊢ ( 𝑦 = 𝑁 → 𝑦 ∈ V ) |
| 203 | eqeq2 | ⊢ ( 𝑦 = 𝑁 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑁 ) ) | |
| 204 | 203 | biimpa | ⊢ ( ( 𝑦 = 𝑁 ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑁 ) |
| 205 | 204 6 | syl | ⊢ ( ( 𝑦 = 𝑁 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐷 ) |
| 206 | 202 205 | csbied | ⊢ ( 𝑦 = 𝑁 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐷 ) |
| 207 | 31 | recnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 208 | 39 34 201 206 1 207 | telfsumo2 | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) = ( 𝐷 − 𝐶 ) ) |
| 209 | 195 208 | breqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ≤ ( 𝐷 − 𝐶 ) ) |