This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsumle.m | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| dvfsumle.a | |- ( ph -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) ) |
||
| dvfsumle.v | |- ( ( ph /\ x e. ( M (,) N ) ) -> B e. V ) |
||
| dvfsumle.b | |- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
||
| dvfsumle.c | |- ( x = M -> A = C ) |
||
| dvfsumle.d | |- ( x = N -> A = D ) |
||
| dvfsumle.x | |- ( ( ph /\ k e. ( M ..^ N ) ) -> X e. RR ) |
||
| dvfsumle.l | |- ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> X <_ B ) |
||
| Assertion | dvfsumle | |- ( ph -> sum_ k e. ( M ..^ N ) X <_ ( D - C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsumle.m | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | dvfsumle.a | |- ( ph -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) ) |
|
| 3 | dvfsumle.v | |- ( ( ph /\ x e. ( M (,) N ) ) -> B e. V ) |
|
| 4 | dvfsumle.b | |- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
|
| 5 | dvfsumle.c | |- ( x = M -> A = C ) |
|
| 6 | dvfsumle.d | |- ( x = N -> A = D ) |
|
| 7 | dvfsumle.x | |- ( ( ph /\ k e. ( M ..^ N ) ) -> X e. RR ) |
|
| 8 | dvfsumle.l | |- ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> X <_ B ) |
|
| 9 | fzofi | |- ( M ..^ N ) e. Fin |
|
| 10 | 9 | a1i | |- ( ph -> ( M ..^ N ) e. Fin ) |
| 11 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 12 | 1 11 | syl | |- ( ph -> M e. ZZ ) |
| 13 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 14 | 1 13 | syl | |- ( ph -> N e. ZZ ) |
| 15 | fzval2 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M ... N ) = ( ( M [,] N ) i^i ZZ ) ) |
|
| 16 | 12 14 15 | syl2anc | |- ( ph -> ( M ... N ) = ( ( M [,] N ) i^i ZZ ) ) |
| 17 | inss1 | |- ( ( M [,] N ) i^i ZZ ) C_ ( M [,] N ) |
|
| 18 | 16 17 | eqsstrdi | |- ( ph -> ( M ... N ) C_ ( M [,] N ) ) |
| 19 | 18 | sselda | |- ( ( ph /\ y e. ( M ... N ) ) -> y e. ( M [,] N ) ) |
| 20 | cncff | |- ( ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
|
| 21 | 2 20 | syl | |- ( ph -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
| 22 | eqid | |- ( x e. ( M [,] N ) |-> A ) = ( x e. ( M [,] N ) |-> A ) |
|
| 23 | 22 | fmpt | |- ( A. x e. ( M [,] N ) A e. RR <-> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
| 24 | 21 23 | sylibr | |- ( ph -> A. x e. ( M [,] N ) A e. RR ) |
| 25 | nfcsb1v | |- F/_ x [_ y / x ]_ A |
|
| 26 | 25 | nfel1 | |- F/ x [_ y / x ]_ A e. RR |
| 27 | csbeq1a | |- ( x = y -> A = [_ y / x ]_ A ) |
|
| 28 | 27 | eleq1d | |- ( x = y -> ( A e. RR <-> [_ y / x ]_ A e. RR ) ) |
| 29 | 26 28 | rspc | |- ( y e. ( M [,] N ) -> ( A. x e. ( M [,] N ) A e. RR -> [_ y / x ]_ A e. RR ) ) |
| 30 | 24 29 | mpan9 | |- ( ( ph /\ y e. ( M [,] N ) ) -> [_ y / x ]_ A e. RR ) |
| 31 | 19 30 | syldan | |- ( ( ph /\ y e. ( M ... N ) ) -> [_ y / x ]_ A e. RR ) |
| 32 | 31 | ralrimiva | |- ( ph -> A. y e. ( M ... N ) [_ y / x ]_ A e. RR ) |
| 33 | fzofzp1 | |- ( k e. ( M ..^ N ) -> ( k + 1 ) e. ( M ... N ) ) |
|
| 34 | csbeq1 | |- ( y = ( k + 1 ) -> [_ y / x ]_ A = [_ ( k + 1 ) / x ]_ A ) |
|
| 35 | 34 | eleq1d | |- ( y = ( k + 1 ) -> ( [_ y / x ]_ A e. RR <-> [_ ( k + 1 ) / x ]_ A e. RR ) ) |
| 36 | 35 | rspccva | |- ( ( A. y e. ( M ... N ) [_ y / x ]_ A e. RR /\ ( k + 1 ) e. ( M ... N ) ) -> [_ ( k + 1 ) / x ]_ A e. RR ) |
| 37 | 32 33 36 | syl2an | |- ( ( ph /\ k e. ( M ..^ N ) ) -> [_ ( k + 1 ) / x ]_ A e. RR ) |
| 38 | elfzofz | |- ( k e. ( M ..^ N ) -> k e. ( M ... N ) ) |
|
| 39 | csbeq1 | |- ( y = k -> [_ y / x ]_ A = [_ k / x ]_ A ) |
|
| 40 | 39 | eleq1d | |- ( y = k -> ( [_ y / x ]_ A e. RR <-> [_ k / x ]_ A e. RR ) ) |
| 41 | 40 | rspccva | |- ( ( A. y e. ( M ... N ) [_ y / x ]_ A e. RR /\ k e. ( M ... N ) ) -> [_ k / x ]_ A e. RR ) |
| 42 | 32 38 41 | syl2an | |- ( ( ph /\ k e. ( M ..^ N ) ) -> [_ k / x ]_ A e. RR ) |
| 43 | 37 42 | resubcld | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) e. RR ) |
| 44 | elfzoelz | |- ( k e. ( M ..^ N ) -> k e. ZZ ) |
|
| 45 | 44 | adantl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. ZZ ) |
| 46 | 45 | zred | |- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. RR ) |
| 47 | 46 | recnd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. CC ) |
| 48 | ax-1cn | |- 1 e. CC |
|
| 49 | pncan2 | |- ( ( k e. CC /\ 1 e. CC ) -> ( ( k + 1 ) - k ) = 1 ) |
|
| 50 | 47 48 49 | sylancl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( k + 1 ) - k ) = 1 ) |
| 51 | 50 | oveq2d | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. ( ( k + 1 ) - k ) ) = ( X x. 1 ) ) |
| 52 | 7 | recnd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> X e. CC ) |
| 53 | peano2re | |- ( k e. RR -> ( k + 1 ) e. RR ) |
|
| 54 | 46 53 | syl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. RR ) |
| 55 | 54 | recnd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. CC ) |
| 56 | 52 55 47 | subdid | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. ( ( k + 1 ) - k ) ) = ( ( X x. ( k + 1 ) ) - ( X x. k ) ) ) |
| 57 | 52 | mulridd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. 1 ) = X ) |
| 58 | 51 56 57 | 3eqtr3d | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( X x. ( k + 1 ) ) - ( X x. k ) ) = X ) |
| 59 | 52 | adantr | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k [,] ( k + 1 ) ) ) -> X e. CC ) |
| 60 | 46 54 | iccssred | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k [,] ( k + 1 ) ) C_ RR ) |
| 61 | ax-resscn | |- RR C_ CC |
|
| 62 | 60 61 | sstrdi | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k [,] ( k + 1 ) ) C_ CC ) |
| 63 | 62 | sselda | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k [,] ( k + 1 ) ) ) -> y e. CC ) |
| 64 | ovmpot | |- ( ( X e. CC /\ y e. CC ) -> ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = ( X x. y ) ) |
|
| 65 | 59 63 64 | syl2anc | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k [,] ( k + 1 ) ) ) -> ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = ( X x. y ) ) |
| 66 | 65 | eqeq2d | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k [,] ( k + 1 ) ) ) -> ( z = ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) <-> z = ( X x. y ) ) ) |
| 67 | 66 | pm5.32da | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( y e. ( k [,] ( k + 1 ) ) /\ z = ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) ) <-> ( y e. ( k [,] ( k + 1 ) ) /\ z = ( X x. y ) ) ) ) |
| 68 | 67 | opabbidv | |- ( ( ph /\ k e. ( M ..^ N ) ) -> { <. y , z >. | ( y e. ( k [,] ( k + 1 ) ) /\ z = ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) ) } = { <. y , z >. | ( y e. ( k [,] ( k + 1 ) ) /\ z = ( X x. y ) ) } ) |
| 69 | df-mpt | |- ( y e. ( k [,] ( k + 1 ) ) |-> ( X x. y ) ) = { <. y , z >. | ( y e. ( k [,] ( k + 1 ) ) /\ z = ( X x. y ) ) } |
|
| 70 | 68 69 | eqtr4di | |- ( ( ph /\ k e. ( M ..^ N ) ) -> { <. y , z >. | ( y e. ( k [,] ( k + 1 ) ) /\ z = ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) ) } = ( y e. ( k [,] ( k + 1 ) ) |-> ( X x. y ) ) ) |
| 71 | df-mpt | |- ( y e. ( k [,] ( k + 1 ) ) |-> ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) ) = { <. y , z >. | ( y e. ( k [,] ( k + 1 ) ) /\ z = ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) ) } |
|
| 72 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 73 | 72 | mpomulcn | |- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 74 | 61 | a1i | |- ( ( ph /\ k e. ( M ..^ N ) ) -> RR C_ CC ) |
| 75 | cncfmptc | |- ( ( X e. RR /\ ( k [,] ( k + 1 ) ) C_ CC /\ RR C_ CC ) -> ( y e. ( k [,] ( k + 1 ) ) |-> X ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
|
| 76 | 7 62 74 75 | syl3anc | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k [,] ( k + 1 ) ) |-> X ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
| 77 | cncfmptid | |- ( ( ( k [,] ( k + 1 ) ) C_ RR /\ RR C_ CC ) -> ( y e. ( k [,] ( k + 1 ) ) |-> y ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
|
| 78 | 60 61 77 | sylancl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k [,] ( k + 1 ) ) |-> y ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
| 79 | simpl | |- ( ( X e. RR /\ y e. RR ) -> X e. RR ) |
|
| 80 | 79 | recnd | |- ( ( X e. RR /\ y e. RR ) -> X e. CC ) |
| 81 | simpr | |- ( ( X e. RR /\ y e. RR ) -> y e. RR ) |
|
| 82 | 81 | recnd | |- ( ( X e. RR /\ y e. RR ) -> y e. CC ) |
| 83 | 64 | eqcomd | |- ( ( X e. CC /\ y e. CC ) -> ( X x. y ) = ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) ) |
| 84 | 80 82 83 | syl2anc | |- ( ( X e. RR /\ y e. RR ) -> ( X x. y ) = ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) ) |
| 85 | remulcl | |- ( ( X e. RR /\ y e. RR ) -> ( X x. y ) e. RR ) |
|
| 86 | 84 85 | eqeltrrd | |- ( ( X e. RR /\ y e. RR ) -> ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) e. RR ) |
| 87 | 72 73 76 78 61 86 | cncfmpt2ss | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k [,] ( k + 1 ) ) |-> ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
| 88 | 71 87 | eqeltrrid | |- ( ( ph /\ k e. ( M ..^ N ) ) -> { <. y , z >. | ( y e. ( k [,] ( k + 1 ) ) /\ z = ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) ) } e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
| 89 | 70 88 | eqeltrrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k [,] ( k + 1 ) ) |-> ( X x. y ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
| 90 | reelprrecn | |- RR e. { RR , CC } |
|
| 91 | 90 | a1i | |- ( ( ph /\ k e. ( M ..^ N ) ) -> RR e. { RR , CC } ) |
| 92 | 12 | zred | |- ( ph -> M e. RR ) |
| 93 | 92 | adantr | |- ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR ) |
| 94 | 93 | rexrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR* ) |
| 95 | elfzole1 | |- ( k e. ( M ..^ N ) -> M <_ k ) |
|
| 96 | 95 | adantl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> M <_ k ) |
| 97 | iooss1 | |- ( ( M e. RR* /\ M <_ k ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) |
|
| 98 | 94 96 97 | syl2anc | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) |
| 99 | 14 | zred | |- ( ph -> N e. RR ) |
| 100 | 99 | adantr | |- ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR ) |
| 101 | 100 | rexrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR* ) |
| 102 | 33 | adantl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. ( M ... N ) ) |
| 103 | elfzle2 | |- ( ( k + 1 ) e. ( M ... N ) -> ( k + 1 ) <_ N ) |
|
| 104 | 102 103 | syl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) <_ N ) |
| 105 | iooss2 | |- ( ( N e. RR* /\ ( k + 1 ) <_ N ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
|
| 106 | 101 104 105 | syl2anc | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
| 107 | 98 106 | sstrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
| 108 | ioossicc | |- ( M (,) N ) C_ ( M [,] N ) |
|
| 109 | 92 99 | iccssred | |- ( ph -> ( M [,] N ) C_ RR ) |
| 110 | 109 | adantr | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M [,] N ) C_ RR ) |
| 111 | 110 61 | sstrdi | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M [,] N ) C_ CC ) |
| 112 | 108 111 | sstrid | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) N ) C_ CC ) |
| 113 | 107 112 | sstrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ CC ) |
| 114 | 113 | sselda | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k (,) ( k + 1 ) ) ) -> y e. CC ) |
| 115 | 1cnd | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k (,) ( k + 1 ) ) ) -> 1 e. CC ) |
|
| 116 | 74 | sselda | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. RR ) -> y e. CC ) |
| 117 | 1cnd | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. RR ) -> 1 e. CC ) |
|
| 118 | 91 | dvmptid | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. RR |-> y ) ) = ( y e. RR |-> 1 ) ) |
| 119 | ioossre | |- ( k (,) ( k + 1 ) ) C_ RR |
|
| 120 | 119 | a1i | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ RR ) |
| 121 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 122 | iooretop | |- ( k (,) ( k + 1 ) ) e. ( topGen ` ran (,) ) |
|
| 123 | 122 | a1i | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) e. ( topGen ` ran (,) ) ) |
| 124 | 91 116 117 118 120 121 72 123 | dvmptres | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( k (,) ( k + 1 ) ) |-> y ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> 1 ) ) |
| 125 | 91 114 115 124 52 | dvmptcmul | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( k (,) ( k + 1 ) ) |-> ( X x. y ) ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> ( X x. 1 ) ) ) |
| 126 | 57 | mpteq2dv | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k (,) ( k + 1 ) ) |-> ( X x. 1 ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> X ) ) |
| 127 | 125 126 | eqtrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( k (,) ( k + 1 ) ) |-> ( X x. y ) ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> X ) ) |
| 128 | nfcv | |- F/_ y A |
|
| 129 | 128 25 27 | cbvmpt | |- ( x e. ( k [,] ( k + 1 ) ) |-> A ) = ( y e. ( k [,] ( k + 1 ) ) |-> [_ y / x ]_ A ) |
| 130 | iccss | |- ( ( ( M e. RR /\ N e. RR ) /\ ( M <_ k /\ ( k + 1 ) <_ N ) ) -> ( k [,] ( k + 1 ) ) C_ ( M [,] N ) ) |
|
| 131 | 93 100 96 104 130 | syl22anc | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k [,] ( k + 1 ) ) C_ ( M [,] N ) ) |
| 132 | 131 | resmptd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( M [,] N ) |-> A ) |` ( k [,] ( k + 1 ) ) ) = ( x e. ( k [,] ( k + 1 ) ) |-> A ) ) |
| 133 | 2 | adantr | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) ) |
| 134 | rescncf | |- ( ( k [,] ( k + 1 ) ) C_ ( M [,] N ) -> ( ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) -> ( ( x e. ( M [,] N ) |-> A ) |` ( k [,] ( k + 1 ) ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) ) |
|
| 135 | 131 133 134 | sylc | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( M [,] N ) |-> A ) |` ( k [,] ( k + 1 ) ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
| 136 | 132 135 | eqeltrrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( k [,] ( k + 1 ) ) |-> A ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
| 137 | 129 136 | eqeltrrid | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k [,] ( k + 1 ) ) |-> [_ y / x ]_ A ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
| 138 | 21 | adantr | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
| 139 | 138 23 | sylibr | |- ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( M [,] N ) A e. RR ) |
| 140 | 108 | sseli | |- ( y e. ( M (,) N ) -> y e. ( M [,] N ) ) |
| 141 | 29 | impcom | |- ( ( A. x e. ( M [,] N ) A e. RR /\ y e. ( M [,] N ) ) -> [_ y / x ]_ A e. RR ) |
| 142 | 139 140 141 | syl2an | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( M (,) N ) ) -> [_ y / x ]_ A e. RR ) |
| 143 | 142 | recnd | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( M (,) N ) ) -> [_ y / x ]_ A e. CC ) |
| 144 | 108 | sseli | |- ( x e. ( M (,) N ) -> x e. ( M [,] N ) ) |
| 145 | 21 | fvmptelcdm | |- ( ( ph /\ x e. ( M [,] N ) ) -> A e. RR ) |
| 146 | 145 | adantlr | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> A e. RR ) |
| 147 | 144 146 | sylan2 | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> A e. RR ) |
| 148 | 147 | fmpttd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M (,) N ) |-> A ) : ( M (,) N ) --> RR ) |
| 149 | ioossre | |- ( M (,) N ) C_ RR |
|
| 150 | dvfre | |- ( ( ( x e. ( M (,) N ) |-> A ) : ( M (,) N ) --> RR /\ ( M (,) N ) C_ RR ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR ) |
|
| 151 | 148 149 150 | sylancl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR ) |
| 152 | 4 | adantr | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
| 153 | 152 | dmeqd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) = dom ( x e. ( M (,) N ) |-> B ) ) |
| 154 | 3 | adantlr | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> B e. V ) |
| 155 | 154 | ralrimiva | |- ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( M (,) N ) B e. V ) |
| 156 | dmmptg | |- ( A. x e. ( M (,) N ) B e. V -> dom ( x e. ( M (,) N ) |-> B ) = ( M (,) N ) ) |
|
| 157 | 155 156 | syl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( x e. ( M (,) N ) |-> B ) = ( M (,) N ) ) |
| 158 | 153 157 | eqtrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( M (,) N ) ) |
| 159 | 152 158 | feq12d | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR <-> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) ) |
| 160 | 151 159 | mpbid | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) |
| 161 | eqid | |- ( x e. ( M (,) N ) |-> B ) = ( x e. ( M (,) N ) |-> B ) |
|
| 162 | 161 | fmpt | |- ( A. x e. ( M (,) N ) B e. RR <-> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) |
| 163 | 160 162 | sylibr | |- ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( M (,) N ) B e. RR ) |
| 164 | nfcsb1v | |- F/_ x [_ y / x ]_ B |
|
| 165 | 164 | nfel1 | |- F/ x [_ y / x ]_ B e. RR |
| 166 | csbeq1a | |- ( x = y -> B = [_ y / x ]_ B ) |
|
| 167 | 166 | eleq1d | |- ( x = y -> ( B e. RR <-> [_ y / x ]_ B e. RR ) ) |
| 168 | 165 167 | rspc | |- ( y e. ( M (,) N ) -> ( A. x e. ( M (,) N ) B e. RR -> [_ y / x ]_ B e. RR ) ) |
| 169 | 163 168 | mpan9 | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( M (,) N ) ) -> [_ y / x ]_ B e. RR ) |
| 170 | 128 25 27 | cbvmpt | |- ( x e. ( M (,) N ) |-> A ) = ( y e. ( M (,) N ) |-> [_ y / x ]_ A ) |
| 171 | 170 | oveq2i | |- ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( RR _D ( y e. ( M (,) N ) |-> [_ y / x ]_ A ) ) |
| 172 | nfcv | |- F/_ y B |
|
| 173 | 172 164 166 | cbvmpt | |- ( x e. ( M (,) N ) |-> B ) = ( y e. ( M (,) N ) |-> [_ y / x ]_ B ) |
| 174 | 152 171 173 | 3eqtr3g | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( M (,) N ) |-> [_ y / x ]_ A ) ) = ( y e. ( M (,) N ) |-> [_ y / x ]_ B ) ) |
| 175 | 91 143 169 174 107 121 72 123 | dvmptres | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( k (,) ( k + 1 ) ) |-> [_ y / x ]_ A ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> [_ y / x ]_ B ) ) |
| 176 | 8 | anassrs | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> X <_ B ) |
| 177 | 176 | ralrimiva | |- ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( k (,) ( k + 1 ) ) X <_ B ) |
| 178 | nfcv | |- F/_ x X |
|
| 179 | nfcv | |- F/_ x <_ |
|
| 180 | 178 179 164 | nfbr | |- F/ x X <_ [_ y / x ]_ B |
| 181 | 166 | breq2d | |- ( x = y -> ( X <_ B <-> X <_ [_ y / x ]_ B ) ) |
| 182 | 180 181 | rspc | |- ( y e. ( k (,) ( k + 1 ) ) -> ( A. x e. ( k (,) ( k + 1 ) ) X <_ B -> X <_ [_ y / x ]_ B ) ) |
| 183 | 177 182 | mpan9 | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k (,) ( k + 1 ) ) ) -> X <_ [_ y / x ]_ B ) |
| 184 | 46 | rexrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. RR* ) |
| 185 | 54 | rexrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. RR* ) |
| 186 | 46 | lep1d | |- ( ( ph /\ k e. ( M ..^ N ) ) -> k <_ ( k + 1 ) ) |
| 187 | lbicc2 | |- ( ( k e. RR* /\ ( k + 1 ) e. RR* /\ k <_ ( k + 1 ) ) -> k e. ( k [,] ( k + 1 ) ) ) |
|
| 188 | 184 185 186 187 | syl3anc | |- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. ( k [,] ( k + 1 ) ) ) |
| 189 | ubicc2 | |- ( ( k e. RR* /\ ( k + 1 ) e. RR* /\ k <_ ( k + 1 ) ) -> ( k + 1 ) e. ( k [,] ( k + 1 ) ) ) |
|
| 190 | 184 185 186 189 | syl3anc | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. ( k [,] ( k + 1 ) ) ) |
| 191 | oveq2 | |- ( y = k -> ( X x. y ) = ( X x. k ) ) |
|
| 192 | oveq2 | |- ( y = ( k + 1 ) -> ( X x. y ) = ( X x. ( k + 1 ) ) ) |
|
| 193 | 46 54 89 127 137 175 183 188 190 186 191 39 192 34 | dvle | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( X x. ( k + 1 ) ) - ( X x. k ) ) <_ ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) |
| 194 | 58 193 | eqbrtrrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> X <_ ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) |
| 195 | 10 7 43 194 | fsumle | |- ( ph -> sum_ k e. ( M ..^ N ) X <_ sum_ k e. ( M ..^ N ) ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) |
| 196 | vex | |- y e. _V |
|
| 197 | 196 | a1i | |- ( y = M -> y e. _V ) |
| 198 | eqeq2 | |- ( y = M -> ( x = y <-> x = M ) ) |
|
| 199 | 198 | biimpa | |- ( ( y = M /\ x = y ) -> x = M ) |
| 200 | 199 5 | syl | |- ( ( y = M /\ x = y ) -> A = C ) |
| 201 | 197 200 | csbied | |- ( y = M -> [_ y / x ]_ A = C ) |
| 202 | 196 | a1i | |- ( y = N -> y e. _V ) |
| 203 | eqeq2 | |- ( y = N -> ( x = y <-> x = N ) ) |
|
| 204 | 203 | biimpa | |- ( ( y = N /\ x = y ) -> x = N ) |
| 205 | 204 6 | syl | |- ( ( y = N /\ x = y ) -> A = D ) |
| 206 | 202 205 | csbied | |- ( y = N -> [_ y / x ]_ A = D ) |
| 207 | 31 | recnd | |- ( ( ph /\ y e. ( M ... N ) ) -> [_ y / x ]_ A e. CC ) |
| 208 | 39 34 201 206 1 207 | telfsumo2 | |- ( ph -> sum_ k e. ( M ..^ N ) ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) = ( D - C ) ) |
| 209 | 195 208 | breqtrd | |- ( ph -> sum_ k e. ( M ..^ N ) X <_ ( D - C ) ) |