This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | telfsumo.1 | ⊢ ( 𝑘 = 𝑗 → 𝐴 = 𝐵 ) | |
| telfsumo.2 | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → 𝐴 = 𝐶 ) | ||
| telfsumo.3 | ⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐷 ) | ||
| telfsumo.4 | ⊢ ( 𝑘 = 𝑁 → 𝐴 = 𝐸 ) | ||
| telfsumo.5 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| telfsumo.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | ||
| Assertion | telfsumo2 | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐶 − 𝐵 ) = ( 𝐸 − 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | telfsumo.1 | ⊢ ( 𝑘 = 𝑗 → 𝐴 = 𝐵 ) | |
| 2 | telfsumo.2 | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → 𝐴 = 𝐶 ) | |
| 3 | telfsumo.3 | ⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐷 ) | |
| 4 | telfsumo.4 | ⊢ ( 𝑘 = 𝑁 → 𝐴 = 𝐸 ) | |
| 5 | telfsumo.5 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 6 | telfsumo.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | |
| 7 | 1 | negeqd | ⊢ ( 𝑘 = 𝑗 → - 𝐴 = - 𝐵 ) |
| 8 | 2 | negeqd | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → - 𝐴 = - 𝐶 ) |
| 9 | 3 | negeqd | ⊢ ( 𝑘 = 𝑀 → - 𝐴 = - 𝐷 ) |
| 10 | 4 | negeqd | ⊢ ( 𝑘 = 𝑁 → - 𝐴 = - 𝐸 ) |
| 11 | 6 | negcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → - 𝐴 ∈ ℂ ) |
| 12 | 7 8 9 10 5 11 | telfsumo | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( - 𝐵 − - 𝐶 ) = ( - 𝐷 − - 𝐸 ) ) |
| 13 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ∈ ℂ ) |
| 14 | elfzofz | ⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 15 | 1 | eleq1d | ⊢ ( 𝑘 = 𝑗 → ( 𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ ) ) |
| 16 | 15 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ∈ ℂ ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐵 ∈ ℂ ) |
| 17 | 13 14 16 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝐵 ∈ ℂ ) |
| 18 | fzofzp1 | ⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑗 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) | |
| 19 | 2 | eleq1d | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ ) ) |
| 20 | 19 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ∈ ℂ ∧ ( 𝑗 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝐶 ∈ ℂ ) |
| 21 | 13 18 20 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝐶 ∈ ℂ ) |
| 22 | 17 21 | neg2subd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( - 𝐵 − - 𝐶 ) = ( 𝐶 − 𝐵 ) ) |
| 23 | 22 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( - 𝐵 − - 𝐶 ) = Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐶 − 𝐵 ) ) |
| 24 | 3 | eleq1d | ⊢ ( 𝑘 = 𝑀 → ( 𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ ) ) |
| 25 | eluzfz1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 26 | 5 25 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 27 | 24 13 26 | rspcdva | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 28 | 4 | eleq1d | ⊢ ( 𝑘 = 𝑁 → ( 𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ ) ) |
| 29 | eluzfz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 30 | 5 29 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 31 | 28 13 30 | rspcdva | ⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 32 | 27 31 | neg2subd | ⊢ ( 𝜑 → ( - 𝐷 − - 𝐸 ) = ( 𝐸 − 𝐷 ) ) |
| 33 | 12 23 32 | 3eqtr3d | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐶 − 𝐵 ) = ( 𝐸 − 𝐷 ) ) |