This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of a real function is real. (Contributed by Mario Carneiro, 1-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvfre | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvf | ⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ | |
| 2 | ffn | ⊢ ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ → ( ℝ D 𝐹 ) Fn dom ( ℝ D 𝐹 ) ) | |
| 3 | 1 2 | mp1i | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ℝ D 𝐹 ) Fn dom ( ℝ D 𝐹 ) ) |
| 4 | 1 | ffvelcdmi | ⊢ ( 𝑥 ∈ dom ( ℝ D 𝐹 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 5 | 4 | adantl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 6 | simpr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → 𝑥 ∈ dom ( ℝ D 𝐹 ) ) | |
| 7 | fvco3 | ⊢ ( ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → ( ( ∗ ∘ ( ℝ D 𝐹 ) ) ‘ 𝑥 ) = ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) | |
| 8 | 1 6 7 | sylancr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → ( ( ∗ ∘ ( ℝ D 𝐹 ) ) ‘ 𝑥 ) = ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 9 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 10 | fss | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 11 | 9 10 | mpan2 | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 : 𝐴 ⟶ ℂ ) |
| 12 | dvcj | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ 𝐹 ) ) = ( ∗ ∘ ( ℝ D 𝐹 ) ) ) | |
| 13 | 11 12 | sylan | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ 𝐹 ) ) = ( ∗ ∘ ( ℝ D 𝐹 ) ) ) |
| 14 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) | |
| 15 | 14 | adantlr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 16 | 15 | cjred | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ∗ ‘ ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 17 | 16 | mpteq2dva | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( 𝑦 ∈ 𝐴 ↦ ( ∗ ‘ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 18 | 15 | recnd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 19 | simpl | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → 𝐹 : 𝐴 ⟶ ℝ ) | |
| 20 | 19 | feqmptd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → 𝐹 = ( 𝑦 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 21 | cjf | ⊢ ∗ : ℂ ⟶ ℂ | |
| 22 | 21 | a1i | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ∗ : ℂ ⟶ ℂ ) |
| 23 | 22 | feqmptd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ∗ = ( 𝑧 ∈ ℂ ↦ ( ∗ ‘ 𝑧 ) ) ) |
| 24 | fveq2 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → ( ∗ ‘ 𝑧 ) = ( ∗ ‘ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 25 | 18 20 23 24 | fmptco | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ∗ ∘ 𝐹 ) = ( 𝑦 ∈ 𝐴 ↦ ( ∗ ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 26 | 17 25 20 | 3eqtr4d | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ∗ ∘ 𝐹 ) = 𝐹 ) |
| 27 | 26 | oveq2d | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ 𝐹 ) ) = ( ℝ D 𝐹 ) ) |
| 28 | 13 27 | eqtr3d | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ∗ ∘ ( ℝ D 𝐹 ) ) = ( ℝ D 𝐹 ) ) |
| 29 | 28 | fveq1d | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ∗ ∘ ( ℝ D 𝐹 ) ) ‘ 𝑥 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → ( ( ∗ ∘ ( ℝ D 𝐹 ) ) ‘ 𝑥 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 31 | 8 30 | eqtr3d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 32 | 5 31 | cjrebd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
| 33 | 32 | ralrimiva | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ∀ 𝑥 ∈ dom ( ℝ D 𝐹 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
| 34 | ffnfv | ⊢ ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ↔ ( ( ℝ D 𝐹 ) Fn dom ( ℝ D 𝐹 ) ∧ ∀ 𝑥 ∈ dom ( ℝ D 𝐹 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) ) | |
| 35 | 3 33 34 | sylanbrc | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |