This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternative way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzval2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 [,] 𝑁 ) ∩ ℤ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzval | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ... 𝑁 ) = { 𝑘 ∈ ℤ ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } ) | |
| 2 | zssre | ⊢ ℤ ⊆ ℝ | |
| 3 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 4 | 2 3 | sstri | ⊢ ℤ ⊆ ℝ* |
| 5 | 4 | sseli | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ* ) |
| 6 | 4 | sseli | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ* ) |
| 7 | iccval | ⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑁 ∈ ℝ* ) → ( 𝑀 [,] 𝑁 ) = { 𝑘 ∈ ℝ* ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } ) | |
| 8 | 5 6 7 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 [,] 𝑁 ) = { 𝑘 ∈ ℝ* ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } ) |
| 9 | 8 | ineq1d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 [,] 𝑁 ) ∩ ℤ ) = ( { 𝑘 ∈ ℝ* ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } ∩ ℤ ) ) |
| 10 | inrab2 | ⊢ ( { 𝑘 ∈ ℝ* ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } ∩ ℤ ) = { 𝑘 ∈ ( ℝ* ∩ ℤ ) ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } | |
| 11 | sseqin2 | ⊢ ( ℤ ⊆ ℝ* ↔ ( ℝ* ∩ ℤ ) = ℤ ) | |
| 12 | 4 11 | mpbi | ⊢ ( ℝ* ∩ ℤ ) = ℤ |
| 13 | 12 | rabeqi | ⊢ { 𝑘 ∈ ( ℝ* ∩ ℤ ) ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } = { 𝑘 ∈ ℤ ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } |
| 14 | 10 13 | eqtri | ⊢ ( { 𝑘 ∈ ℝ* ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } ∩ ℤ ) = { 𝑘 ∈ ℤ ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } |
| 15 | 9 14 | eqtr2di | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → { 𝑘 ∈ ℤ ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } = ( ( 𝑀 [,] 𝑁 ) ∩ ℤ ) ) |
| 16 | 1 15 | eqtrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 [,] 𝑁 ) ∩ ℤ ) ) |