This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014) (Revised by Mario Carneiro, 13-Oct-2016) Reduce axiom usage. (Revised by GG, 15-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | csbied.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| csbied.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 = 𝐶 ) | ||
| Assertion | csbied | ⊢ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbied.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | csbied.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 = 𝐶 ) | |
| 3 | df-csb | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } | |
| 4 | 2 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶 ) ) |
| 5 | 1 4 | sbcied | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶 ) ) |
| 6 | 5 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑧 ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶 ) ) |
| 7 | df-clab | ⊢ ( 𝑧 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ↔ [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ) | |
| 8 | eleq1w | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) | |
| 9 | 8 | sbcbidv | ⊢ ( 𝑦 = 𝑧 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ↔ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ) ) |
| 10 | 9 | sbievw | ⊢ ( [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ↔ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ) |
| 11 | 7 10 | bitr2i | ⊢ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ) |
| 12 | 11 | bibi1i | ⊢ ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶 ) ↔ ( 𝑧 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ↔ 𝑧 ∈ 𝐶 ) ) |
| 13 | 12 | biimpi | ⊢ ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶 ) → ( 𝑧 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ↔ 𝑧 ∈ 𝐶 ) ) |
| 14 | 6 13 | sylg | ⊢ ( 𝜑 → ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ↔ 𝑧 ∈ 𝐶 ) ) |
| 15 | dfcleq | ⊢ ( { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } = 𝐶 ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ↔ 𝑧 ∈ 𝐶 ) ) | |
| 16 | 14 15 | sylibr | ⊢ ( 𝜑 → { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } = 𝐶 ) |
| 17 | 3 16 | eqtrid | ⊢ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) |