This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of finite intersections can be "constructed" inductively by iterating binary intersection _om -many times. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dffi3.1 | ⊢ 𝑅 = ( 𝑢 ∈ V ↦ ran ( 𝑦 ∈ 𝑢 , 𝑧 ∈ 𝑢 ↦ ( 𝑦 ∩ 𝑧 ) ) ) | |
| Assertion | dffi3 | ⊢ ( 𝐴 ∈ 𝑉 → ( fi ‘ 𝐴 ) = ∪ ( rec ( 𝑅 , 𝐴 ) “ ω ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffi3.1 | ⊢ 𝑅 = ( 𝑢 ∈ V ↦ ran ( 𝑦 ∈ 𝑢 , 𝑧 ∈ 𝑢 ↦ ( 𝑦 ∩ 𝑧 ) ) ) | |
| 2 | dffi2 | ⊢ ( 𝐴 ∈ 𝑉 → ( fi ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ ∀ 𝑐 ∈ 𝑥 ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ) } ) | |
| 3 | fr0g | ⊢ ( 𝐴 ∈ 𝑉 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ∅ ) = 𝐴 ) | |
| 4 | frfnom | ⊢ ( rec ( 𝑅 , 𝐴 ) ↾ ω ) Fn ω | |
| 5 | peano1 | ⊢ ∅ ∈ ω | |
| 6 | fnfvelrn | ⊢ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) Fn ω ∧ ∅ ∈ ω ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ∅ ) ∈ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) | |
| 7 | 4 5 6 | mp2an | ⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ∅ ) ∈ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) |
| 8 | 3 7 | eqeltrrdi | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 9 | elssuni | ⊢ ( 𝐴 ∈ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) → 𝐴 ⊆ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 11 | reeanv | ⊢ ( ∃ 𝑚 ∈ ω ∃ 𝑛 ∈ ω ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ↔ ( ∃ 𝑚 ∈ ω 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ω 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ) | |
| 12 | eliun | ⊢ ( 𝑐 ∈ ∪ 𝑚 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ↔ ∃ 𝑚 ∈ ω 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ) | |
| 13 | eliun | ⊢ ( 𝑑 ∈ ∪ 𝑛 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↔ ∃ 𝑛 ∈ ω 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) | |
| 14 | 12 13 | anbi12i | ⊢ ( ( 𝑐 ∈ ∪ 𝑚 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ 𝑑 ∈ ∪ 𝑛 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ↔ ( ∃ 𝑚 ∈ ω 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ω 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ) |
| 15 | fniunfv | ⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) Fn ω → ∪ 𝑚 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) | |
| 16 | 15 | eleq2d | ⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) Fn ω → ( 𝑐 ∈ ∪ 𝑚 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ↔ 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 17 | fniunfv | ⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) Fn ω → ∪ 𝑛 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) | |
| 18 | 17 | eleq2d | ⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) Fn ω → ( 𝑑 ∈ ∪ 𝑛 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↔ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 19 | 16 18 | anbi12d | ⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) Fn ω → ( ( 𝑐 ∈ ∪ 𝑚 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ 𝑑 ∈ ∪ 𝑛 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ↔ ( 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∧ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) ) |
| 20 | 4 19 | ax-mp | ⊢ ( ( 𝑐 ∈ ∪ 𝑚 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ 𝑑 ∈ ∪ 𝑛 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ↔ ( 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∧ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 21 | 11 14 20 | 3bitr2i | ⊢ ( ∃ 𝑚 ∈ ω ∃ 𝑛 ∈ ω ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ↔ ( 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∧ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 22 | ordom | ⊢ Ord ω | |
| 23 | ordunel | ⊢ ( ( Ord ω ∧ 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ( 𝑚 ∪ 𝑛 ) ∈ ω ) | |
| 24 | 22 23 | mp3an1 | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ( 𝑚 ∪ 𝑛 ) ∈ ω ) |
| 25 | 24 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ( 𝑚 ∪ 𝑛 ) ∈ ω ) |
| 26 | simprl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → 𝑚 ∈ ω ) | |
| 27 | 25 26 | jca | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ( ( 𝑚 ∪ 𝑛 ) ∈ ω ∧ 𝑚 ∈ ω ) ) |
| 28 | nnon | ⊢ ( 𝑦 ∈ ω → 𝑦 ∈ On ) | |
| 29 | nnon | ⊢ ( 𝑥 ∈ ω → 𝑥 ∈ On ) | |
| 30 | 29 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) ∧ 𝑦 ∈ ω ) → 𝑥 ∈ On ) |
| 31 | onsseleq | ⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑦 ⊆ 𝑥 ↔ ( 𝑦 ∈ 𝑥 ∨ 𝑦 = 𝑥 ) ) ) | |
| 32 | 28 30 31 | syl2an2 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) ∧ 𝑦 ∈ ω ) → ( 𝑦 ⊆ 𝑥 ↔ ( 𝑦 ∈ 𝑥 ∨ 𝑦 = 𝑥 ) ) ) |
| 33 | rzal | ⊢ ( 𝑥 = ∅ → ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) | |
| 34 | 33 | biantrud | ⊢ ( 𝑥 = ∅ → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ↔ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) ) |
| 35 | fveq2 | ⊢ ( 𝑥 = ∅ → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ∅ ) ) | |
| 36 | 35 | sseq1d | ⊢ ( 𝑥 = ∅ → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ∅ ) ⊆ ( fi ‘ 𝐴 ) ) ) |
| 37 | 34 36 | bitr3d | ⊢ ( 𝑥 = ∅ → ( ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ∅ ) ⊆ ( fi ‘ 𝐴 ) ) ) |
| 38 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) | |
| 39 | 38 | sseq1d | ⊢ ( 𝑥 = 𝑛 → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) ) |
| 40 | 38 | sseq2d | ⊢ ( 𝑥 = 𝑛 → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ) |
| 41 | 40 | raleqbi1dv | ⊢ ( 𝑥 = 𝑛 → ( ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ) |
| 42 | 39 41 | anbi12d | ⊢ ( 𝑥 = 𝑛 → ( ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ↔ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ) ) |
| 43 | fveq2 | ⊢ ( 𝑥 = suc 𝑛 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) | |
| 44 | 43 | sseq1d | ⊢ ( 𝑥 = suc 𝑛 → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) ) |
| 45 | 43 | sseq2d | ⊢ ( 𝑥 = suc 𝑛 → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) |
| 46 | 45 | raleqbi1dv | ⊢ ( 𝑥 = suc 𝑛 → ( ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ suc 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) |
| 47 | 44 46 | anbi12d | ⊢ ( 𝑥 = suc 𝑛 → ( ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ↔ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ suc 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) ) |
| 48 | ssfii | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ( fi ‘ 𝐴 ) ) | |
| 49 | 3 48 | eqsstrd | ⊢ ( 𝐴 ∈ 𝑉 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ∅ ) ⊆ ( fi ‘ 𝐴 ) ) |
| 50 | id | ⊢ ( 𝑥 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → 𝑥 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) | |
| 51 | eqidd | ⊢ ( 𝑥 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → 𝑥 = 𝑥 ) | |
| 52 | ineq1 | ⊢ ( 𝑎 = 𝑥 → ( 𝑎 ∩ 𝑏 ) = ( 𝑥 ∩ 𝑏 ) ) | |
| 53 | 52 | eqeq2d | ⊢ ( 𝑎 = 𝑥 → ( 𝑥 = ( 𝑎 ∩ 𝑏 ) ↔ 𝑥 = ( 𝑥 ∩ 𝑏 ) ) ) |
| 54 | ineq2 | ⊢ ( 𝑏 = 𝑥 → ( 𝑥 ∩ 𝑏 ) = ( 𝑥 ∩ 𝑥 ) ) | |
| 55 | inidm | ⊢ ( 𝑥 ∩ 𝑥 ) = 𝑥 | |
| 56 | 54 55 | eqtrdi | ⊢ ( 𝑏 = 𝑥 → ( 𝑥 ∩ 𝑏 ) = 𝑥 ) |
| 57 | 56 | eqeq2d | ⊢ ( 𝑏 = 𝑥 → ( 𝑥 = ( 𝑥 ∩ 𝑏 ) ↔ 𝑥 = 𝑥 ) ) |
| 58 | 53 57 | rspc2ev | ⊢ ( ( 𝑥 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∧ 𝑥 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∧ 𝑥 = 𝑥 ) → ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) 𝑥 = ( 𝑎 ∩ 𝑏 ) ) |
| 59 | 50 50 51 58 | syl3anc | ⊢ ( 𝑥 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) 𝑥 = ( 𝑎 ∩ 𝑏 ) ) |
| 60 | eqid | ⊢ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) = ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) | |
| 61 | 60 | rnmpo | ⊢ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) = { 𝑥 ∣ ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) 𝑥 = ( 𝑎 ∩ 𝑏 ) } |
| 62 | 61 | eqabri | ⊢ ( 𝑥 ∈ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ↔ ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) 𝑥 = ( 𝑎 ∩ 𝑏 ) ) |
| 63 | 59 62 | sylibr | ⊢ ( 𝑥 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → 𝑥 ∈ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 64 | 63 | ssriv | ⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) |
| 65 | simpl | ⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → 𝑛 ∈ ω ) | |
| 66 | fvex | ⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∈ V | |
| 67 | 66 | uniex | ⊢ ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∈ V |
| 68 | 67 | pwex | ⊢ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∈ V |
| 69 | inss1 | ⊢ ( 𝑎 ∩ 𝑏 ) ⊆ 𝑎 | |
| 70 | elssuni | ⊢ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → 𝑎 ⊆ ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) | |
| 71 | 70 | adantr | ⊢ ( ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∧ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) → 𝑎 ⊆ ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) |
| 72 | 69 71 | sstrid | ⊢ ( ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∧ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) → ( 𝑎 ∩ 𝑏 ) ⊆ ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) |
| 73 | vex | ⊢ 𝑎 ∈ V | |
| 74 | 73 | inex1 | ⊢ ( 𝑎 ∩ 𝑏 ) ∈ V |
| 75 | 74 | elpw | ⊢ ( ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↔ ( 𝑎 ∩ 𝑏 ) ⊆ ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) |
| 76 | 72 75 | sylibr | ⊢ ( ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∧ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) → ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) |
| 77 | 76 | rgen2 | ⊢ ∀ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∀ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) |
| 78 | 60 | fmpo | ⊢ ( ∀ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∀ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↔ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) : ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) × ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ⟶ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) |
| 79 | 77 78 | mpbi | ⊢ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) : ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) × ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ⟶ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) |
| 80 | frn | ⊢ ( ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) : ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) × ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ⟶ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ⊆ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) | |
| 81 | 79 80 | ax-mp | ⊢ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ⊆ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) |
| 82 | 68 81 | ssexi | ⊢ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ∈ V |
| 83 | nfcv | ⊢ Ⅎ 𝑣 𝐴 | |
| 84 | nfcv | ⊢ Ⅎ 𝑣 𝑛 | |
| 85 | nfcv | ⊢ Ⅎ 𝑣 ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) | |
| 86 | mpoeq12 | ⊢ ( ( 𝑢 = 𝑣 ∧ 𝑢 = 𝑣 ) → ( 𝑦 ∈ 𝑢 , 𝑧 ∈ 𝑢 ↦ ( 𝑦 ∩ 𝑧 ) ) = ( 𝑦 ∈ 𝑣 , 𝑧 ∈ 𝑣 ↦ ( 𝑦 ∩ 𝑧 ) ) ) | |
| 87 | 86 | anidms | ⊢ ( 𝑢 = 𝑣 → ( 𝑦 ∈ 𝑢 , 𝑧 ∈ 𝑢 ↦ ( 𝑦 ∩ 𝑧 ) ) = ( 𝑦 ∈ 𝑣 , 𝑧 ∈ 𝑣 ↦ ( 𝑦 ∩ 𝑧 ) ) ) |
| 88 | ineq1 | ⊢ ( 𝑦 = 𝑎 → ( 𝑦 ∩ 𝑧 ) = ( 𝑎 ∩ 𝑧 ) ) | |
| 89 | ineq2 | ⊢ ( 𝑧 = 𝑏 → ( 𝑎 ∩ 𝑧 ) = ( 𝑎 ∩ 𝑏 ) ) | |
| 90 | 88 89 | cbvmpov | ⊢ ( 𝑦 ∈ 𝑣 , 𝑧 ∈ 𝑣 ↦ ( 𝑦 ∩ 𝑧 ) ) = ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) |
| 91 | 87 90 | eqtrdi | ⊢ ( 𝑢 = 𝑣 → ( 𝑦 ∈ 𝑢 , 𝑧 ∈ 𝑢 ↦ ( 𝑦 ∩ 𝑧 ) ) = ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 92 | 91 | rneqd | ⊢ ( 𝑢 = 𝑣 → ran ( 𝑦 ∈ 𝑢 , 𝑧 ∈ 𝑢 ↦ ( 𝑦 ∩ 𝑧 ) ) = ran ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 93 | 92 | cbvmptv | ⊢ ( 𝑢 ∈ V ↦ ran ( 𝑦 ∈ 𝑢 , 𝑧 ∈ 𝑢 ↦ ( 𝑦 ∩ 𝑧 ) ) ) = ( 𝑣 ∈ V ↦ ran ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 94 | 1 93 | eqtri | ⊢ 𝑅 = ( 𝑣 ∈ V ↦ ran ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 95 | rdgeq1 | ⊢ ( 𝑅 = ( 𝑣 ∈ V ↦ ran ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) ) → rec ( 𝑅 , 𝐴 ) = rec ( ( 𝑣 ∈ V ↦ ran ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) ) , 𝐴 ) ) | |
| 96 | 94 95 | ax-mp | ⊢ rec ( 𝑅 , 𝐴 ) = rec ( ( 𝑣 ∈ V ↦ ran ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) ) , 𝐴 ) |
| 97 | 96 | reseq1i | ⊢ ( rec ( 𝑅 , 𝐴 ) ↾ ω ) = ( rec ( ( 𝑣 ∈ V ↦ ran ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) ) , 𝐴 ) ↾ ω ) |
| 98 | mpoeq12 | ⊢ ( ( 𝑣 = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∧ 𝑣 = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) → ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) = ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) | |
| 99 | 98 | anidms | ⊢ ( 𝑣 = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) = ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 100 | 99 | rneqd | ⊢ ( 𝑣 = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ran ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) = ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 101 | 83 84 85 97 100 | frsucmpt | ⊢ ( ( 𝑛 ∈ ω ∧ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ∈ V ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) = ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 102 | 65 82 101 | sylancl | ⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) = ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 103 | 64 102 | sseqtrrid | ⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) |
| 104 | sstr2 | ⊢ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) | |
| 105 | 103 104 | syl5com | ⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) |
| 106 | 105 | ralimdv | ⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) |
| 107 | vex | ⊢ 𝑛 ∈ V | |
| 108 | fveq2 | ⊢ ( 𝑦 = 𝑛 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) | |
| 109 | 108 | sseq1d | ⊢ ( 𝑦 = 𝑛 → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) |
| 110 | 107 109 | ralsn | ⊢ ( ∀ 𝑦 ∈ { 𝑛 } ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) |
| 111 | 103 110 | sylibr | ⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ∀ 𝑦 ∈ { 𝑛 } ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) |
| 112 | 106 111 | jctird | ⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ( ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ∧ ∀ 𝑦 ∈ { 𝑛 } ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) ) |
| 113 | df-suc | ⊢ suc 𝑛 = ( 𝑛 ∪ { 𝑛 } ) | |
| 114 | 113 | raleqi | ⊢ ( ∀ 𝑦 ∈ suc 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ↔ ∀ 𝑦 ∈ ( 𝑛 ∪ { 𝑛 } ) ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) |
| 115 | ralunb | ⊢ ( ∀ 𝑦 ∈ ( 𝑛 ∪ { 𝑛 } ) ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ↔ ( ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ∧ ∀ 𝑦 ∈ { 𝑛 } ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) | |
| 116 | 114 115 | bitri | ⊢ ( ∀ 𝑦 ∈ suc 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ↔ ( ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ∧ ∀ 𝑦 ∈ { 𝑛 } ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) |
| 117 | 112 116 | imbitrrdi | ⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ∀ 𝑦 ∈ suc 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) |
| 118 | fiin | ⊢ ( ( 𝑎 ∈ ( fi ‘ 𝐴 ) ∧ 𝑏 ∈ ( fi ‘ 𝐴 ) ) → ( 𝑎 ∩ 𝑏 ) ∈ ( fi ‘ 𝐴 ) ) | |
| 119 | 118 | rgen2 | ⊢ ∀ 𝑎 ∈ ( fi ‘ 𝐴 ) ∀ 𝑏 ∈ ( fi ‘ 𝐴 ) ( 𝑎 ∩ 𝑏 ) ∈ ( fi ‘ 𝐴 ) |
| 120 | ss2ralv | ⊢ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) → ( ∀ 𝑎 ∈ ( fi ‘ 𝐴 ) ∀ 𝑏 ∈ ( fi ‘ 𝐴 ) ( 𝑎 ∩ 𝑏 ) ∈ ( fi ‘ 𝐴 ) → ∀ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∀ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ( 𝑎 ∩ 𝑏 ) ∈ ( fi ‘ 𝐴 ) ) ) | |
| 121 | 119 120 | mpi | ⊢ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) → ∀ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∀ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ( 𝑎 ∩ 𝑏 ) ∈ ( fi ‘ 𝐴 ) ) |
| 122 | 60 | fmpo | ⊢ ( ∀ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∀ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ( 𝑎 ∩ 𝑏 ) ∈ ( fi ‘ 𝐴 ) ↔ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) : ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) × ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ⟶ ( fi ‘ 𝐴 ) ) |
| 123 | 121 122 | sylib | ⊢ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) → ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) : ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) × ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ⟶ ( fi ‘ 𝐴 ) ) |
| 124 | 123 | frnd | ⊢ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) → ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ⊆ ( fi ‘ 𝐴 ) ) |
| 125 | 124 | adantl | ⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ⊆ ( fi ‘ 𝐴 ) ) |
| 126 | 102 125 | eqsstrd | ⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) |
| 127 | 117 126 | jctild | ⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ suc 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) ) |
| 128 | 127 | expimpd | ⊢ ( 𝑛 ∈ ω → ( ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ suc 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) ) |
| 129 | 128 | a1d | ⊢ ( 𝑛 ∈ ω → ( 𝐴 ∈ 𝑉 → ( ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ suc 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) ) ) |
| 130 | 37 42 47 49 129 | finds2 | ⊢ ( 𝑥 ∈ ω → ( 𝐴 ∈ 𝑉 → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) ) |
| 131 | 130 | impcom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) |
| 132 | 131 | simprd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) → ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) |
| 133 | 132 | r19.21bi | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) ∧ 𝑦 ∈ 𝑥 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) |
| 134 | 133 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) → ( 𝑦 ∈ 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) |
| 135 | 134 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) ∧ 𝑦 ∈ ω ) → ( 𝑦 ∈ 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) |
| 136 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) | |
| 137 | eqimss | ⊢ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) | |
| 138 | 136 137 | syl | ⊢ ( 𝑦 = 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) |
| 139 | 138 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) ∧ 𝑦 ∈ ω ) → ( 𝑦 = 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) |
| 140 | 135 139 | jaod | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) ∧ 𝑦 ∈ ω ) → ( ( 𝑦 ∈ 𝑥 ∨ 𝑦 = 𝑥 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) |
| 141 | 32 140 | sylbid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) ∧ 𝑦 ∈ ω ) → ( 𝑦 ⊆ 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) |
| 142 | 141 | ralrimiva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) → ∀ 𝑦 ∈ ω ( 𝑦 ⊆ 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) |
| 143 | 142 | ralrimiva | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ ω ∀ 𝑦 ∈ ω ( 𝑦 ⊆ 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) |
| 144 | 143 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ∀ 𝑥 ∈ ω ∀ 𝑦 ∈ ω ( 𝑦 ⊆ 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) |
| 145 | ssun1 | ⊢ 𝑚 ⊆ ( 𝑚 ∪ 𝑛 ) | |
| 146 | 145 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → 𝑚 ⊆ ( 𝑚 ∪ 𝑛 ) ) |
| 147 | sseq2 | ⊢ ( 𝑥 = ( 𝑚 ∪ 𝑛 ) → ( 𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ ( 𝑚 ∪ 𝑛 ) ) ) | |
| 148 | fveq2 | ⊢ ( 𝑥 = ( 𝑚 ∪ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) | |
| 149 | 148 | sseq2d | ⊢ ( 𝑥 = ( 𝑚 ∪ 𝑛 ) → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) |
| 150 | 147 149 | imbi12d | ⊢ ( 𝑥 = ( 𝑚 ∪ 𝑛 ) → ( ( 𝑦 ⊆ 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ↔ ( 𝑦 ⊆ ( 𝑚 ∪ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) ) |
| 151 | sseq1 | ⊢ ( 𝑦 = 𝑚 → ( 𝑦 ⊆ ( 𝑚 ∪ 𝑛 ) ↔ 𝑚 ⊆ ( 𝑚 ∪ 𝑛 ) ) ) | |
| 152 | fveq2 | ⊢ ( 𝑦 = 𝑚 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ) | |
| 153 | 152 | sseq1d | ⊢ ( 𝑦 = 𝑚 → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) |
| 154 | 151 153 | imbi12d | ⊢ ( 𝑦 = 𝑚 → ( ( 𝑦 ⊆ ( 𝑚 ∪ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ↔ ( 𝑚 ⊆ ( 𝑚 ∪ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) ) |
| 155 | 150 154 | rspc2v | ⊢ ( ( ( 𝑚 ∪ 𝑛 ) ∈ ω ∧ 𝑚 ∈ ω ) → ( ∀ 𝑥 ∈ ω ∀ 𝑦 ∈ ω ( 𝑦 ⊆ 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) → ( 𝑚 ⊆ ( 𝑚 ∪ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) ) |
| 156 | 27 144 146 155 | syl3c | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 157 | 156 | sseld | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) → 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) |
| 158 | simprr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → 𝑛 ∈ ω ) | |
| 159 | 25 158 | jca | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ( ( 𝑚 ∪ 𝑛 ) ∈ ω ∧ 𝑛 ∈ ω ) ) |
| 160 | ssun2 | ⊢ 𝑛 ⊆ ( 𝑚 ∪ 𝑛 ) | |
| 161 | 160 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → 𝑛 ⊆ ( 𝑚 ∪ 𝑛 ) ) |
| 162 | sseq1 | ⊢ ( 𝑦 = 𝑛 → ( 𝑦 ⊆ ( 𝑚 ∪ 𝑛 ) ↔ 𝑛 ⊆ ( 𝑚 ∪ 𝑛 ) ) ) | |
| 163 | 108 | sseq1d | ⊢ ( 𝑦 = 𝑛 → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) |
| 164 | 162 163 | imbi12d | ⊢ ( 𝑦 = 𝑛 → ( ( 𝑦 ⊆ ( 𝑚 ∪ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ↔ ( 𝑛 ⊆ ( 𝑚 ∪ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) ) |
| 165 | 150 164 | rspc2v | ⊢ ( ( ( 𝑚 ∪ 𝑛 ) ∈ ω ∧ 𝑛 ∈ ω ) → ( ∀ 𝑥 ∈ ω ∀ 𝑦 ∈ ω ( 𝑦 ⊆ 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) → ( 𝑛 ⊆ ( 𝑚 ∪ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) ) |
| 166 | 159 144 161 165 | syl3c | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 167 | 166 | sseld | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ( 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) |
| 168 | 24 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ( 𝑚 ∪ 𝑛 ) ∈ ω ) |
| 169 | peano2 | ⊢ ( ( 𝑚 ∪ 𝑛 ) ∈ ω → suc ( 𝑚 ∪ 𝑛 ) ∈ ω ) | |
| 170 | fveq2 | ⊢ ( 𝑥 = suc ( 𝑚 ∪ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc ( 𝑚 ∪ 𝑛 ) ) ) | |
| 171 | 170 | ssiun2s | ⊢ ( suc ( 𝑚 ∪ 𝑛 ) ∈ ω → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc ( 𝑚 ∪ 𝑛 ) ) ⊆ ∪ 𝑥 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) |
| 172 | 168 169 171 | 3syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc ( 𝑚 ∪ 𝑛 ) ) ⊆ ∪ 𝑥 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) |
| 173 | simprl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) | |
| 174 | simprr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) | |
| 175 | eqidd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ( 𝑐 ∩ 𝑑 ) = ( 𝑐 ∩ 𝑑 ) ) | |
| 176 | ineq1 | ⊢ ( 𝑎 = 𝑐 → ( 𝑎 ∩ 𝑏 ) = ( 𝑐 ∩ 𝑏 ) ) | |
| 177 | 176 | eqeq2d | ⊢ ( 𝑎 = 𝑐 → ( ( 𝑐 ∩ 𝑑 ) = ( 𝑎 ∩ 𝑏 ) ↔ ( 𝑐 ∩ 𝑑 ) = ( 𝑐 ∩ 𝑏 ) ) ) |
| 178 | ineq2 | ⊢ ( 𝑏 = 𝑑 → ( 𝑐 ∩ 𝑏 ) = ( 𝑐 ∩ 𝑑 ) ) | |
| 179 | 178 | eqeq2d | ⊢ ( 𝑏 = 𝑑 → ( ( 𝑐 ∩ 𝑑 ) = ( 𝑐 ∩ 𝑏 ) ↔ ( 𝑐 ∩ 𝑑 ) = ( 𝑐 ∩ 𝑑 ) ) ) |
| 180 | 177 179 | rspc2ev | ⊢ ( ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ ( 𝑐 ∩ 𝑑 ) = ( 𝑐 ∩ 𝑑 ) ) → ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ( 𝑐 ∩ 𝑑 ) = ( 𝑎 ∩ 𝑏 ) ) |
| 181 | 173 174 175 180 | syl3anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ( 𝑐 ∩ 𝑑 ) = ( 𝑎 ∩ 𝑏 ) ) |
| 182 | vex | ⊢ 𝑐 ∈ V | |
| 183 | 182 | inex1 | ⊢ ( 𝑐 ∩ 𝑑 ) ∈ V |
| 184 | eqeq1 | ⊢ ( 𝑥 = ( 𝑐 ∩ 𝑑 ) → ( 𝑥 = ( 𝑎 ∩ 𝑏 ) ↔ ( 𝑐 ∩ 𝑑 ) = ( 𝑎 ∩ 𝑏 ) ) ) | |
| 185 | 184 | 2rexbidv | ⊢ ( 𝑥 = ( 𝑐 ∩ 𝑑 ) → ( ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) 𝑥 = ( 𝑎 ∩ 𝑏 ) ↔ ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ( 𝑐 ∩ 𝑑 ) = ( 𝑎 ∩ 𝑏 ) ) ) |
| 186 | 183 185 | elab | ⊢ ( ( 𝑐 ∩ 𝑑 ) ∈ { 𝑥 ∣ ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) 𝑥 = ( 𝑎 ∩ 𝑏 ) } ↔ ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ( 𝑐 ∩ 𝑑 ) = ( 𝑎 ∩ 𝑏 ) ) |
| 187 | 181 186 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ( 𝑐 ∩ 𝑑 ) ∈ { 𝑥 ∣ ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) 𝑥 = ( 𝑎 ∩ 𝑏 ) } ) |
| 188 | eqid | ⊢ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) = ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) | |
| 189 | 188 | rnmpo | ⊢ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) = { 𝑥 ∣ ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) 𝑥 = ( 𝑎 ∩ 𝑏 ) } |
| 190 | 187 189 | eleqtrrdi | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ( 𝑐 ∩ 𝑑 ) ∈ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 191 | fvex | ⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∈ V | |
| 192 | 191 | uniex | ⊢ ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∈ V |
| 193 | 192 | pwex | ⊢ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∈ V |
| 194 | elssuni | ⊢ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) → 𝑎 ⊆ ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) | |
| 195 | 69 194 | sstrid | ⊢ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) → ( 𝑎 ∩ 𝑏 ) ⊆ ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 196 | 74 | elpw | ⊢ ( ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↔ ( 𝑎 ∩ 𝑏 ) ⊆ ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 197 | 195 196 | sylibr | ⊢ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) → ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 198 | 197 | adantr | ⊢ ( ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) → ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 199 | 198 | rgen2 | ⊢ ∀ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∀ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) |
| 200 | 188 | fmpo | ⊢ ( ∀ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∀ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↔ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) : ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) × ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ⟶ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 201 | 199 200 | mpbi | ⊢ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) : ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) × ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ⟶ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) |
| 202 | frn | ⊢ ( ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) : ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) × ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ⟶ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) → ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ⊆ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) | |
| 203 | 201 202 | ax-mp | ⊢ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ⊆ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) |
| 204 | 193 203 | ssexi | ⊢ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ∈ V |
| 205 | nfcv | ⊢ Ⅎ 𝑣 ( 𝑚 ∪ 𝑛 ) | |
| 206 | nfcv | ⊢ Ⅎ 𝑣 ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) | |
| 207 | mpoeq12 | ⊢ ( ( 𝑣 = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑣 = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) → ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) = ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) | |
| 208 | 207 | anidms | ⊢ ( 𝑣 = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) → ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) = ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 209 | 208 | rneqd | ⊢ ( 𝑣 = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) → ran ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) = ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 210 | 83 205 206 97 209 | frsucmpt | ⊢ ( ( ( 𝑚 ∪ 𝑛 ) ∈ ω ∧ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ∈ V ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc ( 𝑚 ∪ 𝑛 ) ) = ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 211 | 168 204 210 | sylancl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc ( 𝑚 ∪ 𝑛 ) ) = ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 212 | 190 211 | eleqtrrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ( 𝑐 ∩ 𝑑 ) ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc ( 𝑚 ∪ 𝑛 ) ) ) |
| 213 | 172 212 | sseldd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ( 𝑐 ∩ 𝑑 ) ∈ ∪ 𝑥 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) |
| 214 | fniunfv | ⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) Fn ω → ∪ 𝑥 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) | |
| 215 | 4 214 | ax-mp | ⊢ ∪ 𝑥 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) |
| 216 | 213 215 | eleqtrdi | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 217 | 216 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ( ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) → ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 218 | 157 167 217 | syl2and | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ( ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) → ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 219 | 218 | rexlimdvva | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑚 ∈ ω ∃ 𝑛 ∈ ω ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) → ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 220 | 219 | imp | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑚 ∈ ω ∃ 𝑛 ∈ ω ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ) → ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 221 | 21 220 | sylan2br | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∧ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) → ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 222 | 221 | ralrimivva | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∀ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 223 | 131 | simpld | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ) |
| 224 | fvex | ⊢ ( fi ‘ 𝐴 ) ∈ V | |
| 225 | 224 | elpw2 | ⊢ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ∈ 𝒫 ( fi ‘ 𝐴 ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ) |
| 226 | 223 225 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ∈ 𝒫 ( fi ‘ 𝐴 ) ) |
| 227 | 226 | ralrimiva | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ∈ 𝒫 ( fi ‘ 𝐴 ) ) |
| 228 | fnfvrnss | ⊢ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) Fn ω ∧ ∀ 𝑥 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ∈ 𝒫 ( fi ‘ 𝐴 ) ) → ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ⊆ 𝒫 ( fi ‘ 𝐴 ) ) | |
| 229 | 4 227 228 | sylancr | ⊢ ( 𝐴 ∈ 𝑉 → ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ⊆ 𝒫 ( fi ‘ 𝐴 ) ) |
| 230 | sspwuni | ⊢ ( ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ⊆ 𝒫 ( fi ‘ 𝐴 ) ↔ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ⊆ ( fi ‘ 𝐴 ) ) | |
| 231 | 229 230 | sylib | ⊢ ( 𝐴 ∈ 𝑉 → ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ⊆ ( fi ‘ 𝐴 ) ) |
| 232 | ssexg | ⊢ ( ( ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ⊆ ( fi ‘ 𝐴 ) ∧ ( fi ‘ 𝐴 ) ∈ V ) → ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∈ V ) | |
| 233 | 231 224 232 | sylancl | ⊢ ( 𝐴 ∈ 𝑉 → ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∈ V ) |
| 234 | sseq2 | ⊢ ( 𝑥 = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) | |
| 235 | eleq2 | ⊢ ( 𝑥 = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) → ( ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ↔ ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) | |
| 236 | 235 | raleqbi1dv | ⊢ ( 𝑥 = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) → ( ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ↔ ∀ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 237 | 236 | raleqbi1dv | ⊢ ( 𝑥 = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) → ( ∀ 𝑐 ∈ 𝑥 ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ↔ ∀ 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∀ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 238 | 234 237 | anbi12d | ⊢ ( 𝑥 = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) → ( ( 𝐴 ⊆ 𝑥 ∧ ∀ 𝑐 ∈ 𝑥 ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ) ↔ ( 𝐴 ⊆ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∧ ∀ 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∀ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) ) |
| 239 | 238 | elabg | ⊢ ( ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∈ V → ( ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∈ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ ∀ 𝑐 ∈ 𝑥 ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ) } ↔ ( 𝐴 ⊆ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∧ ∀ 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∀ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) ) |
| 240 | 233 239 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∈ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ ∀ 𝑐 ∈ 𝑥 ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ) } ↔ ( 𝐴 ⊆ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∧ ∀ 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∀ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) ) |
| 241 | 10 222 240 | mpbir2and | ⊢ ( 𝐴 ∈ 𝑉 → ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∈ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ ∀ 𝑐 ∈ 𝑥 ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ) } ) |
| 242 | intss1 | ⊢ ( ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∈ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ ∀ 𝑐 ∈ 𝑥 ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ) } → ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ ∀ 𝑐 ∈ 𝑥 ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ) } ⊆ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) | |
| 243 | 241 242 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ ∀ 𝑐 ∈ 𝑥 ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ) } ⊆ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 244 | 2 243 | eqsstrd | ⊢ ( 𝐴 ∈ 𝑉 → ( fi ‘ 𝐴 ) ⊆ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 245 | 244 231 | eqssd | ⊢ ( 𝐴 ∈ 𝑉 → ( fi ‘ 𝐴 ) = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 246 | df-ima | ⊢ ( rec ( 𝑅 , 𝐴 ) “ ω ) = ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) | |
| 247 | 246 | unieqi | ⊢ ∪ ( rec ( 𝑅 , 𝐴 ) “ ω ) = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) |
| 248 | 245 247 | eqtr4di | ⊢ ( 𝐴 ∈ 𝑉 → ( fi ‘ 𝐴 ) = ∪ ( rec ( 𝑅 , 𝐴 ) “ ω ) ) |