This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of finite intersections is the smallest set that contains A and is closed under pairwise intersection. (Contributed by Mario Carneiro, 24-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffi2 | ⊢ ( 𝐴 ∈ 𝑉 → ( fi ‘ 𝐴 ) = ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 2 | vex | ⊢ 𝑡 ∈ V | |
| 3 | elfi | ⊢ ( ( 𝑡 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑡 ∈ ( fi ‘ 𝐴 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑡 = ∩ 𝑥 ) ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝐴 ∈ V → ( 𝑡 ∈ ( fi ‘ 𝐴 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑡 = ∩ 𝑥 ) ) |
| 5 | 4 | biimpd | ⊢ ( 𝐴 ∈ V → ( 𝑡 ∈ ( fi ‘ 𝐴 ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑡 = ∩ 𝑥 ) ) |
| 6 | df-rex | ⊢ ( ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑡 = ∩ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) ) | |
| 7 | fiint | ⊢ ( ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝑧 ) ) | |
| 8 | elinel1 | ⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ∈ 𝒫 𝐴 ) | |
| 9 | 8 | elpwid | ⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ⊆ 𝐴 ) |
| 10 | 9 | 3ad2ant2 | ⊢ ( ( 𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑥 ⊆ 𝐴 ) |
| 11 | simp1 | ⊢ ( ( 𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝐴 ⊆ 𝑧 ) | |
| 12 | 10 11 | sstrd | ⊢ ( ( 𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑥 ⊆ 𝑧 ) |
| 13 | eqvisset | ⊢ ( 𝑡 = ∩ 𝑥 → ∩ 𝑥 ∈ V ) | |
| 14 | intex | ⊢ ( 𝑥 ≠ ∅ ↔ ∩ 𝑥 ∈ V ) | |
| 15 | 13 14 | sylibr | ⊢ ( 𝑡 = ∩ 𝑥 → 𝑥 ≠ ∅ ) |
| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑥 ≠ ∅ ) |
| 17 | elinel2 | ⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ∈ Fin ) | |
| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑥 ∈ Fin ) |
| 19 | 12 16 18 | 3jca | ⊢ ( ( 𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → ( 𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) ) |
| 20 | 19 | 3expib | ⊢ ( 𝐴 ⊆ 𝑧 → ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → ( 𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) ) ) |
| 21 | pm2.27 | ⊢ ( ( 𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ( ( ( 𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝑧 ) → ∩ 𝑥 ∈ 𝑧 ) ) | |
| 22 | 20 21 | syl6 | ⊢ ( 𝐴 ⊆ 𝑧 → ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → ( ( ( 𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝑧 ) → ∩ 𝑥 ∈ 𝑧 ) ) ) |
| 23 | eleq1 | ⊢ ( 𝑡 = ∩ 𝑥 → ( 𝑡 ∈ 𝑧 ↔ ∩ 𝑥 ∈ 𝑧 ) ) | |
| 24 | 23 | biimprd | ⊢ ( 𝑡 = ∩ 𝑥 → ( ∩ 𝑥 ∈ 𝑧 → 𝑡 ∈ 𝑧 ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → ( ∩ 𝑥 ∈ 𝑧 → 𝑡 ∈ 𝑧 ) ) |
| 26 | 25 | a1i | ⊢ ( 𝐴 ⊆ 𝑧 → ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → ( ∩ 𝑥 ∈ 𝑧 → 𝑡 ∈ 𝑧 ) ) ) |
| 27 | 22 26 | syldd | ⊢ ( 𝐴 ⊆ 𝑧 → ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → ( ( ( 𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝑧 ) → 𝑡 ∈ 𝑧 ) ) ) |
| 28 | 27 | com23 | ⊢ ( 𝐴 ⊆ 𝑧 → ( ( ( 𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝑧 ) → ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑡 ∈ 𝑧 ) ) ) |
| 29 | 28 | alimdv | ⊢ ( 𝐴 ⊆ 𝑧 → ( ∀ 𝑥 ( ( 𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝑧 ) → ∀ 𝑥 ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑡 ∈ 𝑧 ) ) ) |
| 30 | 7 29 | biimtrid | ⊢ ( 𝐴 ⊆ 𝑧 → ( ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 → ∀ 𝑥 ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑡 ∈ 𝑧 ) ) ) |
| 31 | 30 | imp | ⊢ ( ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) → ∀ 𝑥 ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑡 ∈ 𝑧 ) ) |
| 32 | 19.23v | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑡 ∈ 𝑧 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑡 ∈ 𝑧 ) ) | |
| 33 | 31 32 | sylib | ⊢ ( ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) → ( ∃ 𝑥 ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑡 ∈ 𝑧 ) ) |
| 34 | 6 33 | biimtrid | ⊢ ( ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) → ( ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑡 = ∩ 𝑥 → 𝑡 ∈ 𝑧 ) ) |
| 35 | 5 34 | sylan9 | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) ) → ( 𝑡 ∈ ( fi ‘ 𝐴 ) → 𝑡 ∈ 𝑧 ) ) |
| 36 | 35 | ssrdv | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) ) → ( fi ‘ 𝐴 ) ⊆ 𝑧 ) |
| 37 | 36 | ex | ⊢ ( 𝐴 ∈ V → ( ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) → ( fi ‘ 𝐴 ) ⊆ 𝑧 ) ) |
| 38 | 37 | alrimiv | ⊢ ( 𝐴 ∈ V → ∀ 𝑧 ( ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) → ( fi ‘ 𝐴 ) ⊆ 𝑧 ) ) |
| 39 | ssintab | ⊢ ( ( fi ‘ 𝐴 ) ⊆ ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ↔ ∀ 𝑧 ( ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) → ( fi ‘ 𝐴 ) ⊆ 𝑧 ) ) | |
| 40 | 38 39 | sylibr | ⊢ ( 𝐴 ∈ V → ( fi ‘ 𝐴 ) ⊆ ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ) |
| 41 | ssfii | ⊢ ( 𝐴 ∈ V → 𝐴 ⊆ ( fi ‘ 𝐴 ) ) | |
| 42 | fiin | ⊢ ( ( 𝑥 ∈ ( fi ‘ 𝐴 ) ∧ 𝑦 ∈ ( fi ‘ 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ) | |
| 43 | 42 | rgen2 | ⊢ ∀ 𝑥 ∈ ( fi ‘ 𝐴 ) ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) |
| 44 | fvex | ⊢ ( fi ‘ 𝐴 ) ∈ V | |
| 45 | sseq2 | ⊢ ( 𝑧 = ( fi ‘ 𝐴 ) → ( 𝐴 ⊆ 𝑧 ↔ 𝐴 ⊆ ( fi ‘ 𝐴 ) ) ) | |
| 46 | eleq2 | ⊢ ( 𝑧 = ( fi ‘ 𝐴 ) → ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ↔ ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ) ) | |
| 47 | 46 | raleqbi1dv | ⊢ ( 𝑧 = ( fi ‘ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ↔ ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ) ) |
| 48 | 47 | raleqbi1dv | ⊢ ( 𝑧 = ( fi ‘ 𝐴 ) → ( ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ↔ ∀ 𝑥 ∈ ( fi ‘ 𝐴 ) ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ) ) |
| 49 | 45 48 | anbi12d | ⊢ ( 𝑧 = ( fi ‘ 𝐴 ) → ( ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) ↔ ( 𝐴 ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ( fi ‘ 𝐴 ) ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ) ) ) |
| 50 | 44 49 | elab | ⊢ ( ( fi ‘ 𝐴 ) ∈ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ↔ ( 𝐴 ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ( fi ‘ 𝐴 ) ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ) ) |
| 51 | 41 43 50 | sylanblrc | ⊢ ( 𝐴 ∈ V → ( fi ‘ 𝐴 ) ∈ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ) |
| 52 | intss1 | ⊢ ( ( fi ‘ 𝐴 ) ∈ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } → ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ⊆ ( fi ‘ 𝐴 ) ) | |
| 53 | 51 52 | syl | ⊢ ( 𝐴 ∈ V → ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ⊆ ( fi ‘ 𝐴 ) ) |
| 54 | 40 53 | eqssd | ⊢ ( 𝐴 ∈ V → ( fi ‘ 𝐴 ) = ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ) |
| 55 | 1 54 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( fi ‘ 𝐴 ) = ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ) |