This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function generated by finite recursive definition generation is a function on omega. (Contributed by NM, 15-Oct-1996) (Revised by Mario Carneiro, 14-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frfnom | ⊢ ( rec ( 𝐹 , 𝐴 ) ↾ ω ) Fn ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfun | ⊢ Fun rec ( 𝐹 , 𝐴 ) | |
| 2 | funres | ⊢ ( Fun rec ( 𝐹 , 𝐴 ) → Fun ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ) | |
| 3 | 1 2 | ax-mp | ⊢ Fun ( rec ( 𝐹 , 𝐴 ) ↾ ω ) |
| 4 | dmres | ⊢ dom ( rec ( 𝐹 , 𝐴 ) ↾ ω ) = ( ω ∩ dom rec ( 𝐹 , 𝐴 ) ) | |
| 5 | rdgdmlim | ⊢ Lim dom rec ( 𝐹 , 𝐴 ) | |
| 6 | limomss | ⊢ ( Lim dom rec ( 𝐹 , 𝐴 ) → ω ⊆ dom rec ( 𝐹 , 𝐴 ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ω ⊆ dom rec ( 𝐹 , 𝐴 ) |
| 8 | dfss2 | ⊢ ( ω ⊆ dom rec ( 𝐹 , 𝐴 ) ↔ ( ω ∩ dom rec ( 𝐹 , 𝐴 ) ) = ω ) | |
| 9 | 7 8 | mpbi | ⊢ ( ω ∩ dom rec ( 𝐹 , 𝐴 ) ) = ω |
| 10 | 4 9 | eqtri | ⊢ dom ( rec ( 𝐹 , 𝐴 ) ↾ ω ) = ω |
| 11 | df-fn | ⊢ ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) Fn ω ↔ ( Fun ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ∧ dom ( rec ( 𝐹 , 𝐴 ) ↾ ω ) = ω ) ) | |
| 12 | 3 10 11 | mpbir2an | ⊢ ( rec ( 𝐹 , 𝐴 ) ↾ ω ) Fn ω |