This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fifo.1 | ⊢ 𝐹 = ( 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑦 ) | |
| Assertion | fifo | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ( fi ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fifo.1 | ⊢ 𝐹 = ( 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑦 ) | |
| 2 | eldifsni | ⊢ ( 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) → 𝑦 ≠ ∅ ) | |
| 3 | intex | ⊢ ( 𝑦 ≠ ∅ ↔ ∩ 𝑦 ∈ V ) | |
| 4 | 2 3 | sylib | ⊢ ( 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) → ∩ 𝑦 ∈ V ) |
| 5 | 4 | rgen | ⊢ ∀ 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∩ 𝑦 ∈ V |
| 6 | 1 | fnmpt | ⊢ ( ∀ 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∩ 𝑦 ∈ V → 𝐹 Fn ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ) |
| 7 | 5 6 | mp1i | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 Fn ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ) |
| 8 | dffn4 | ⊢ ( 𝐹 Fn ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↔ 𝐹 : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ran 𝐹 ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ran 𝐹 ) |
| 10 | elfi2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( fi ‘ 𝐴 ) ↔ ∃ 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) 𝑥 = ∩ 𝑦 ) ) | |
| 11 | 1 | elrnmpt | ⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) 𝑥 = ∩ 𝑦 ) ) |
| 12 | 11 | elv | ⊢ ( 𝑥 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) 𝑥 = ∩ 𝑦 ) |
| 13 | 10 12 | bitr4di | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( fi ‘ 𝐴 ) ↔ 𝑥 ∈ ran 𝐹 ) ) |
| 14 | 13 | eqrdv | ⊢ ( 𝐴 ∈ 𝑉 → ( fi ‘ 𝐴 ) = ran 𝐹 ) |
| 15 | foeq3 | ⊢ ( ( fi ‘ 𝐴 ) = ran 𝐹 → ( 𝐹 : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ( fi ‘ 𝐴 ) ↔ 𝐹 : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ran 𝐹 ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ( fi ‘ 𝐴 ) ↔ 𝐹 : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ran 𝐹 ) ) |
| 17 | 9 16 | mpbird | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ( fi ‘ 𝐴 ) ) |