This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rdgeq1 | ⊢ ( 𝐹 = 𝐺 → rec ( 𝐹 , 𝐴 ) = rec ( 𝐺 , 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | ⊢ ( 𝐹 = 𝐺 → ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) = ( 𝐺 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) | |
| 2 | 1 | ifeq2d | ⊢ ( 𝐹 = 𝐺 → if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) = if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐺 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) |
| 3 | 2 | ifeq2d | ⊢ ( 𝐹 = 𝐺 → if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) = if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐺 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) |
| 4 | 3 | mpteq2dv | ⊢ ( 𝐹 = 𝐺 → ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) = ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐺 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) |
| 5 | recseq | ⊢ ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) = ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐺 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) → recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐺 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐹 = 𝐺 → recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐺 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) ) |
| 7 | df-rdg | ⊢ rec ( 𝐹 , 𝐴 ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) | |
| 8 | df-rdg | ⊢ rec ( 𝐺 , 𝐴 ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐺 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) | |
| 9 | 6 7 8 | 3eqtr4g | ⊢ ( 𝐹 = 𝐺 → rec ( 𝐹 , 𝐴 ) = rec ( 𝐺 , 𝐴 ) ) |