This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor value resulting from finite recursive definition generation (special case where the generation function is expressed in maps-to notation). (Contributed by NM, 14-Sep-2003) (Revised by Scott Fenton, 2-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frsucmpt.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| frsucmpt.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| frsucmpt.3 | ⊢ Ⅎ 𝑥 𝐷 | ||
| frsucmpt.4 | ⊢ 𝐹 = ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) | ||
| frsucmpt.5 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝐵 ) → 𝐶 = 𝐷 ) | ||
| Assertion | frsucmpt | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐷 ∈ 𝑉 ) → ( 𝐹 ‘ suc 𝐵 ) = 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frsucmpt.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | frsucmpt.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | frsucmpt.3 | ⊢ Ⅎ 𝑥 𝐷 | |
| 4 | frsucmpt.4 | ⊢ 𝐹 = ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) | |
| 5 | frsucmpt.5 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝐵 ) → 𝐶 = 𝐷 ) | |
| 6 | frsuc | ⊢ ( 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) ) ) | |
| 7 | 4 | fveq1i | ⊢ ( 𝐹 ‘ suc 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) |
| 8 | 4 | fveq1i | ⊢ ( 𝐹 ‘ 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) |
| 9 | 8 | fveq2i | ⊢ ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) ) |
| 10 | 6 7 9 | 3eqtr4g | ⊢ ( 𝐵 ∈ ω → ( 𝐹 ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 11 | fvex | ⊢ ( 𝐹 ‘ 𝐵 ) ∈ V | |
| 12 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ V ↦ 𝐶 ) | |
| 13 | 12 1 | nfrdg | ⊢ Ⅎ 𝑥 rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) |
| 14 | nfcv | ⊢ Ⅎ 𝑥 ω | |
| 15 | 13 14 | nfres | ⊢ Ⅎ 𝑥 ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) |
| 16 | 4 15 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 |
| 17 | 16 2 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝐵 ) |
| 18 | eqid | ⊢ ( 𝑥 ∈ V ↦ 𝐶 ) = ( 𝑥 ∈ V ↦ 𝐶 ) | |
| 19 | 17 3 5 18 | fvmptf | ⊢ ( ( ( 𝐹 ‘ 𝐵 ) ∈ V ∧ 𝐷 ∈ 𝑉 ) → ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝐷 ) |
| 20 | 11 19 | mpan | ⊢ ( 𝐷 ∈ 𝑉 → ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝐷 ) |
| 21 | 10 20 | sylan9eq | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐷 ∈ 𝑉 ) → ( 𝐹 ‘ suc 𝐵 ) = 𝐷 ) |