This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The elements of ( fiC ) are closed under finite intersection. (Contributed by Mario Carneiro, 24-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fiin | ⊢ ( ( 𝐴 ∈ ( fi ‘ 𝐶 ) ∧ 𝐵 ∈ ( fi ‘ 𝐶 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ ( fi ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex | ⊢ ( 𝐴 ∈ ( fi ‘ 𝐶 ) → 𝐶 ∈ V ) | |
| 2 | elfi | ⊢ ( ( 𝐴 ∈ ( fi ‘ 𝐶 ) ∧ 𝐶 ∈ V ) → ( 𝐴 ∈ ( fi ‘ 𝐶 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ∩ 𝑥 ) ) | |
| 3 | 1 2 | mpdan | ⊢ ( 𝐴 ∈ ( fi ‘ 𝐶 ) → ( 𝐴 ∈ ( fi ‘ 𝐶 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ∩ 𝑥 ) ) |
| 4 | 3 | ibi | ⊢ ( 𝐴 ∈ ( fi ‘ 𝐶 ) → ∃ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ∩ 𝑥 ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ( fi ‘ 𝐶 ) ∧ 𝐵 ∈ ( fi ‘ 𝐶 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ∩ 𝑥 ) |
| 6 | simpr | ⊢ ( ( 𝐴 ∈ ( fi ‘ 𝐶 ) ∧ 𝐵 ∈ ( fi ‘ 𝐶 ) ) → 𝐵 ∈ ( fi ‘ 𝐶 ) ) | |
| 7 | elfi | ⊢ ( ( 𝐵 ∈ ( fi ‘ 𝐶 ) ∧ 𝐶 ∈ V ) → ( 𝐵 ∈ ( fi ‘ 𝐶 ) ↔ ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐵 = ∩ 𝑦 ) ) | |
| 8 | 7 | ancoms | ⊢ ( ( 𝐶 ∈ V ∧ 𝐵 ∈ ( fi ‘ 𝐶 ) ) → ( 𝐵 ∈ ( fi ‘ 𝐶 ) ↔ ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐵 = ∩ 𝑦 ) ) |
| 9 | 1 8 | sylan | ⊢ ( ( 𝐴 ∈ ( fi ‘ 𝐶 ) ∧ 𝐵 ∈ ( fi ‘ 𝐶 ) ) → ( 𝐵 ∈ ( fi ‘ 𝐶 ) ↔ ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐵 = ∩ 𝑦 ) ) |
| 10 | 6 9 | mpbid | ⊢ ( ( 𝐴 ∈ ( fi ‘ 𝐶 ) ∧ 𝐵 ∈ ( fi ‘ 𝐶 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐵 = ∩ 𝑦 ) |
| 11 | elin | ⊢ ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ↔ ( 𝑥 ∈ 𝒫 𝐶 ∧ 𝑥 ∈ Fin ) ) | |
| 12 | elin | ⊢ ( 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ↔ ( 𝑦 ∈ 𝒫 𝐶 ∧ 𝑦 ∈ Fin ) ) | |
| 13 | pwuncl | ⊢ ( ( 𝑥 ∈ 𝒫 𝐶 ∧ 𝑦 ∈ 𝒫 𝐶 ) → ( 𝑥 ∪ 𝑦 ) ∈ 𝒫 𝐶 ) | |
| 14 | unfi | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝑦 ∈ Fin ) → ( 𝑥 ∪ 𝑦 ) ∈ Fin ) | |
| 15 | 13 14 | anim12i | ⊢ ( ( ( 𝑥 ∈ 𝒫 𝐶 ∧ 𝑦 ∈ 𝒫 𝐶 ) ∧ ( 𝑥 ∈ Fin ∧ 𝑦 ∈ Fin ) ) → ( ( 𝑥 ∪ 𝑦 ) ∈ 𝒫 𝐶 ∧ ( 𝑥 ∪ 𝑦 ) ∈ Fin ) ) |
| 16 | 15 | an4s | ⊢ ( ( ( 𝑥 ∈ 𝒫 𝐶 ∧ 𝑥 ∈ Fin ) ∧ ( 𝑦 ∈ 𝒫 𝐶 ∧ 𝑦 ∈ Fin ) ) → ( ( 𝑥 ∪ 𝑦 ) ∈ 𝒫 𝐶 ∧ ( 𝑥 ∪ 𝑦 ) ∈ Fin ) ) |
| 17 | 11 12 16 | syl2anb | ⊢ ( ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝑥 ∪ 𝑦 ) ∈ 𝒫 𝐶 ∧ ( 𝑥 ∪ 𝑦 ) ∈ Fin ) ) |
| 18 | elin | ⊢ ( ( 𝑥 ∪ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ↔ ( ( 𝑥 ∪ 𝑦 ) ∈ 𝒫 𝐶 ∧ ( 𝑥 ∪ 𝑦 ) ∈ Fin ) ) | |
| 19 | 17 18 | sylibr | ⊢ ( ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝑥 ∪ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) |
| 20 | ineq12 | ⊢ ( ( 𝐴 = ∩ 𝑥 ∧ 𝐵 = ∩ 𝑦 ) → ( 𝐴 ∩ 𝐵 ) = ( ∩ 𝑥 ∩ ∩ 𝑦 ) ) | |
| 21 | intun | ⊢ ∩ ( 𝑥 ∪ 𝑦 ) = ( ∩ 𝑥 ∩ ∩ 𝑦 ) | |
| 22 | 20 21 | eqtr4di | ⊢ ( ( 𝐴 = ∩ 𝑥 ∧ 𝐵 = ∩ 𝑦 ) → ( 𝐴 ∩ 𝐵 ) = ∩ ( 𝑥 ∪ 𝑦 ) ) |
| 23 | inteq | ⊢ ( 𝑧 = ( 𝑥 ∪ 𝑦 ) → ∩ 𝑧 = ∩ ( 𝑥 ∪ 𝑦 ) ) | |
| 24 | 23 | rspceeqv | ⊢ ( ( ( 𝑥 ∪ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∩ ( 𝑥 ∪ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑧 ) |
| 25 | 19 22 24 | syl2an | ⊢ ( ( ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ ( 𝐴 = ∩ 𝑥 ∧ 𝐵 = ∩ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑧 ) |
| 26 | 25 | an4s | ⊢ ( ( ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ 𝐴 = ∩ 𝑥 ) ∧ ( 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ 𝐵 = ∩ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑧 ) |
| 27 | 26 | rexlimdvaa | ⊢ ( ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ 𝐴 = ∩ 𝑥 ) → ( ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐵 = ∩ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑧 ) ) |
| 28 | 27 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ∩ 𝑥 → ( ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐵 = ∩ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑧 ) ) |
| 29 | 5 10 28 | sylc | ⊢ ( ( 𝐴 ∈ ( fi ‘ 𝐶 ) ∧ 𝐵 ∈ ( fi ‘ 𝐶 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑧 ) |
| 30 | inex1g | ⊢ ( 𝐴 ∈ ( fi ‘ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ V ) | |
| 31 | elfi | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ V ∧ 𝐶 ∈ V ) → ( ( 𝐴 ∩ 𝐵 ) ∈ ( fi ‘ 𝐶 ) ↔ ∃ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑧 ) ) | |
| 32 | 30 1 31 | syl2anc | ⊢ ( 𝐴 ∈ ( fi ‘ 𝐶 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ ( fi ‘ 𝐶 ) ↔ ∃ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑧 ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝐴 ∈ ( fi ‘ 𝐶 ) ∧ 𝐵 ∈ ( fi ‘ 𝐶 ) ) → ( ( 𝐴 ∩ 𝐵 ) ∈ ( fi ‘ 𝐶 ) ↔ ∃ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑧 ) ) |
| 34 | 29 33 | mpbird | ⊢ ( ( 𝐴 ∈ ( fi ‘ 𝐶 ) ∧ 𝐵 ∈ ( fi ‘ 𝐶 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ ( fi ‘ 𝐶 ) ) |