This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for chscl . (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chscl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Cℋ ) | |
| chscl.2 | ⊢ ( 𝜑 → 𝐵 ∈ Cℋ ) | ||
| chscl.3 | ⊢ ( 𝜑 → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) | ||
| chscl.4 | ⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ) | ||
| chscl.5 | ⊢ ( 𝜑 → 𝐻 ⇝𝑣 𝑢 ) | ||
| chscl.6 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ) | ||
| Assertion | chscllem2 | ⊢ ( 𝜑 → 𝐹 ∈ dom ⇝𝑣 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chscl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Cℋ ) | |
| 2 | chscl.2 | ⊢ ( 𝜑 → 𝐵 ∈ Cℋ ) | |
| 3 | chscl.3 | ⊢ ( 𝜑 → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) | |
| 4 | chscl.4 | ⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ) | |
| 5 | chscl.5 | ⊢ ( 𝜑 → 𝐻 ⇝𝑣 𝑢 ) | |
| 6 | chscl.6 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ) | |
| 7 | 1 2 3 4 5 6 | chscllem1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝐴 ) |
| 8 | chss | ⊢ ( 𝐴 ∈ Cℋ → 𝐴 ⊆ ℋ ) | |
| 9 | 1 8 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ ℋ ) |
| 10 | 7 9 | fssd | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℋ ) |
| 11 | hlimcaui | ⊢ ( 𝐻 ⇝𝑣 𝑢 → 𝐻 ∈ Cauchy ) | |
| 12 | 5 11 | syl | ⊢ ( 𝜑 → 𝐻 ∈ Cauchy ) |
| 13 | hcaucvg | ⊢ ( ( 𝐻 ∈ Cauchy ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) < 𝑥 ) | |
| 14 | 12 13 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) < 𝑥 ) |
| 15 | eluznn | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) | |
| 16 | 15 | adantll | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) |
| 17 | chsh | ⊢ ( 𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
| 18 | 1 17 | syl | ⊢ ( 𝜑 → 𝐴 ∈ Sℋ ) |
| 19 | chsh | ⊢ ( 𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) | |
| 20 | 2 19 | syl | ⊢ ( 𝜑 → 𝐵 ∈ Sℋ ) |
| 21 | shscl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ ) | |
| 22 | 18 20 21 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ ) |
| 23 | shss | ⊢ ( ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ → ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ ) | |
| 24 | 22 23 | syl | ⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ ) |
| 26 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐻 ‘ 𝑗 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
| 27 | 25 26 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐻 ‘ 𝑗 ) ∈ ℋ ) |
| 28 | 27 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( 𝐻 ‘ 𝑗 ) ∈ ℋ ) |
| 29 | 4 24 | fssd | ⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ℋ ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → 𝐻 : ℕ ⟶ ℋ ) |
| 31 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → 𝑘 ∈ ℕ ) | |
| 32 | 30 31 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( 𝐻 ‘ 𝑘 ) ∈ ℋ ) |
| 33 | hvsubcl | ⊢ ( ( ( 𝐻 ‘ 𝑗 ) ∈ ℋ ∧ ( 𝐻 ‘ 𝑘 ) ∈ ℋ ) → ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ∈ ℋ ) | |
| 34 | 28 32 33 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ∈ ℋ ) |
| 35 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝐴 ⊆ ℋ ) |
| 36 | 7 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝐴 ) |
| 37 | 35 36 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ℋ ) |
| 38 | 37 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℋ ) |
| 39 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → 𝐴 ⊆ ℋ ) |
| 40 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → 𝐹 : ℕ ⟶ 𝐴 ) |
| 41 | 40 31 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐴 ) |
| 42 | 39 41 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℋ ) |
| 43 | hvsubcl | ⊢ ( ( ( 𝐹 ‘ 𝑗 ) ∈ ℋ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℋ ) → ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ℋ ) | |
| 44 | 38 42 43 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ℋ ) |
| 45 | hvsubcl | ⊢ ( ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ∈ ℋ ∧ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ℋ ) → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℋ ) | |
| 46 | 34 44 45 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℋ ) |
| 47 | normcl | ⊢ ( ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℋ → ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ ) | |
| 48 | 46 47 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ ) |
| 49 | 48 | sqge0d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → 0 ≤ ( ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ↑ 2 ) ) |
| 50 | normcl | ⊢ ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ℋ → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) | |
| 51 | 44 50 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 52 | 51 | resqcld | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) ∈ ℝ ) |
| 53 | 48 | resqcld | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ↑ 2 ) ∈ ℝ ) |
| 54 | 52 53 | addge01d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( 0 ≤ ( ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ↑ 2 ) ↔ ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) ≤ ( ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ↑ 2 ) ) ) ) |
| 55 | 49 54 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) ≤ ( ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ↑ 2 ) ) ) |
| 56 | 18 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → 𝐴 ∈ Sℋ ) |
| 57 | 36 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝐴 ) |
| 58 | shsubcl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ 𝐴 ) | |
| 59 | 56 57 41 58 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ 𝐴 ) |
| 60 | hvsubsub4 | ⊢ ( ( ( ( 𝐻 ‘ 𝑗 ) ∈ ℋ ∧ ( 𝐻 ‘ 𝑘 ) ∈ ℋ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℋ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℋ ) ) → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) −ℎ ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) | |
| 61 | 28 32 38 42 60 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) −ℎ ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 62 | ocsh | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) | |
| 63 | 39 62 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |
| 64 | 2fveq3 | ⊢ ( 𝑛 = 𝑗 → ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) = ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑗 ) ) ) | |
| 65 | fvex | ⊢ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑗 ) ) ∈ V | |
| 66 | 64 6 65 | fvmpt | ⊢ ( 𝑗 ∈ ℕ → ( 𝐹 ‘ 𝑗 ) = ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑗 ) ) ) |
| 67 | 66 | eqcomd | ⊢ ( 𝑗 ∈ ℕ → ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐹 ‘ 𝑗 ) ) |
| 68 | 67 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐹 ‘ 𝑗 ) ) |
| 69 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝐴 ∈ Cℋ ) |
| 70 | 9 62 | syl | ⊢ ( 𝜑 → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |
| 71 | shless | ⊢ ( ( ( 𝐵 ∈ Sℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) ∧ 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) → ( 𝐵 +ℋ 𝐴 ) ⊆ ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) | |
| 72 | 20 70 18 3 71 | syl31anc | ⊢ ( 𝜑 → ( 𝐵 +ℋ 𝐴 ) ⊆ ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) |
| 73 | shscom | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) | |
| 74 | 18 20 73 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) |
| 75 | shscom | ⊢ ( ( 𝐴 ∈ Sℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) → ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) | |
| 76 | 18 70 75 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) |
| 77 | 72 74 76 | 3sstr4d | ⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) |
| 78 | 77 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) |
| 79 | 78 26 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐻 ‘ 𝑗 ) ∈ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) |
| 80 | pjpreeq | ⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐻 ‘ 𝑗 ) ∈ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) → ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐹 ‘ 𝑗 ) ↔ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝐴 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) ) ) ) | |
| 81 | 69 79 80 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑗 ) ) = ( 𝐹 ‘ 𝑗 ) ↔ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝐴 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) ) ) ) |
| 82 | 68 81 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑗 ) ∈ 𝐴 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) ) ) |
| 83 | 82 | simprd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) ) |
| 84 | 27 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ) → ( 𝐻 ‘ 𝑗 ) ∈ ℋ ) |
| 85 | 37 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℋ ) |
| 86 | shss | ⊢ ( ( ⊥ ‘ 𝐴 ) ∈ Sℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) | |
| 87 | 70 86 | syl | ⊢ ( 𝜑 → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) |
| 88 | 87 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) |
| 89 | 88 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ) → 𝑥 ∈ ℋ ) |
| 90 | hvsubadd | ⊢ ( ( ( 𝐻 ‘ 𝑗 ) ∈ ℋ ∧ ( 𝐹 ‘ 𝑗 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) = 𝑥 ↔ ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) = ( 𝐻 ‘ 𝑗 ) ) ) | |
| 91 | 84 85 89 90 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ) → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) = 𝑥 ↔ ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) = ( 𝐻 ‘ 𝑗 ) ) ) |
| 92 | eqcom | ⊢ ( 𝑥 = ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ↔ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) = 𝑥 ) | |
| 93 | eqcom | ⊢ ( ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) = ( 𝐻 ‘ 𝑗 ) ) | |
| 94 | 91 92 93 | 3bitr4g | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ) → ( 𝑥 = ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ↔ ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) ) ) |
| 95 | 94 | rexbidva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑥 = ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ↔ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) +ℎ 𝑥 ) ) ) |
| 96 | 83 95 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑥 = ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ) |
| 97 | risset | ⊢ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ∈ ( ⊥ ‘ 𝐴 ) ↔ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑥 = ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ) | |
| 98 | 96 97 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ∈ ( ⊥ ‘ 𝐴 ) ) |
| 99 | 98 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ∈ ( ⊥ ‘ 𝐴 ) ) |
| 100 | eleq1w | ⊢ ( 𝑗 = 𝑘 → ( 𝑗 ∈ ℕ ↔ 𝑘 ∈ ℕ ) ) | |
| 101 | 100 | anbi2d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ↔ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) ) |
| 102 | fveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝐻 ‘ 𝑗 ) = ( 𝐻 ‘ 𝑘 ) ) | |
| 103 | fveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 104 | 102 103 | oveq12d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) |
| 105 | 104 | eleq1d | ⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ∈ ( ⊥ ‘ 𝐴 ) ↔ ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ( ⊥ ‘ 𝐴 ) ) ) |
| 106 | 101 105 | imbi12d | ⊢ ( 𝑗 = 𝑘 → ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ∈ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 107 | 106 98 | chvarvv | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ( ⊥ ‘ 𝐴 ) ) |
| 108 | 107 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ( ⊥ ‘ 𝐴 ) ) |
| 109 | shsubcl | ⊢ ( ( ( ⊥ ‘ 𝐴 ) ∈ Sℋ ∧ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) ∈ ( ⊥ ‘ 𝐴 ) ∧ ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ( ⊥ ‘ 𝐴 ) ) → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) −ℎ ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( ⊥ ‘ 𝐴 ) ) | |
| 110 | 63 99 108 109 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑗 ) ) −ℎ ( ( 𝐻 ‘ 𝑘 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( ⊥ ‘ 𝐴 ) ) |
| 111 | 61 110 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( ⊥ ‘ 𝐴 ) ) |
| 112 | shocorth | ⊢ ( 𝐴 ∈ Sℋ → ( ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ 𝐴 ∧ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( ⊥ ‘ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ·ih ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) = 0 ) ) | |
| 113 | 56 112 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ 𝐴 ∧ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( ⊥ ‘ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ·ih ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) = 0 ) ) |
| 114 | 59 111 113 | mp2and | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ·ih ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) = 0 ) |
| 115 | normpyth | ⊢ ( ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ℋ ∧ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℋ ) → ( ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ·ih ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) = 0 → ( ( normℎ ‘ ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) +ℎ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ↑ 2 ) ) ) ) | |
| 116 | 44 46 115 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ·ih ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) = 0 → ( ( normℎ ‘ ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) +ℎ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ↑ 2 ) ) ) ) |
| 117 | 114 116 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( normℎ ‘ ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) +ℎ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ↑ 2 ) ) ) |
| 118 | hvpncan3 | ⊢ ( ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ℋ ∧ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ∈ ℋ ) → ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) +ℎ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) | |
| 119 | 44 34 118 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) +ℎ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) |
| 120 | 119 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( normℎ ‘ ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) +ℎ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ) = ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 121 | 120 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( normℎ ‘ ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) +ℎ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ↑ 2 ) = ( ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ↑ 2 ) ) |
| 122 | 117 121 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) −ℎ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) ↑ 2 ) ) = ( ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ↑ 2 ) ) |
| 123 | 55 122 | breqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ↑ 2 ) ) |
| 124 | normcl | ⊢ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ∈ ℋ → ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ∈ ℝ ) | |
| 125 | 34 124 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 126 | normge0 | ⊢ ( ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) | |
| 127 | 44 126 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → 0 ≤ ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 128 | normge0 | ⊢ ( ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ) | |
| 129 | 34 128 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → 0 ≤ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 130 | 51 125 127 129 | le2sqd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ↔ ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ↑ 2 ) ) ) |
| 131 | 123 130 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 132 | 131 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 133 | 51 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 134 | 125 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 135 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 136 | 135 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → 𝑥 ∈ ℝ ) |
| 137 | lelttr | ⊢ ( ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ∧ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ∧ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) < 𝑥 ) → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) ) | |
| 138 | 133 134 136 137 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) ∧ ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) < 𝑥 ) → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
| 139 | 132 138 | mpand | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) < 𝑥 → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
| 140 | 139 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) < 𝑥 → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
| 141 | 16 140 | syldan | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) < 𝑥 → ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
| 142 | 141 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) < 𝑥 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
| 143 | 142 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝐻 ‘ 𝑗 ) −ℎ ( 𝐻 ‘ 𝑘 ) ) ) < 𝑥 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
| 144 | 14 143 | mpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) |
| 145 | 144 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) |
| 146 | hcau | ⊢ ( 𝐹 ∈ Cauchy ↔ ( 𝐹 : ℕ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑗 ) −ℎ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) ) | |
| 147 | 10 145 146 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ∈ Cauchy ) |
| 148 | ax-hcompl | ⊢ ( 𝐹 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ) | |
| 149 | hlimf | ⊢ ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ | |
| 150 | ffn | ⊢ ( ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ → ⇝𝑣 Fn dom ⇝𝑣 ) | |
| 151 | 149 150 | ax-mp | ⊢ ⇝𝑣 Fn dom ⇝𝑣 |
| 152 | fnbr | ⊢ ( ( ⇝𝑣 Fn dom ⇝𝑣 ∧ 𝐹 ⇝𝑣 𝑥 ) → 𝐹 ∈ dom ⇝𝑣 ) | |
| 153 | 151 152 | mpan | ⊢ ( 𝐹 ⇝𝑣 𝑥 → 𝐹 ∈ dom ⇝𝑣 ) |
| 154 | 153 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 → 𝐹 ∈ dom ⇝𝑣 ) |
| 155 | 147 148 154 | 3syl | ⊢ ( 𝜑 → 𝐹 ∈ dom ⇝𝑣 ) |