This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for chscl . (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chscl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Cℋ ) | |
| chscl.2 | ⊢ ( 𝜑 → 𝐵 ∈ Cℋ ) | ||
| chscl.3 | ⊢ ( 𝜑 → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) | ||
| chscl.4 | ⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ) | ||
| chscl.5 | ⊢ ( 𝜑 → 𝐻 ⇝𝑣 𝑢 ) | ||
| chscl.6 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ) | ||
| chscllem3.7 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| chscllem3.8 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | ||
| chscllem3.9 | ⊢ ( 𝜑 → 𝐷 ∈ 𝐵 ) | ||
| chscllem3.10 | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝑁 ) = ( 𝐶 +ℎ 𝐷 ) ) | ||
| Assertion | chscllem3 | ⊢ ( 𝜑 → 𝐶 = ( 𝐹 ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chscl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Cℋ ) | |
| 2 | chscl.2 | ⊢ ( 𝜑 → 𝐵 ∈ Cℋ ) | |
| 3 | chscl.3 | ⊢ ( 𝜑 → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) | |
| 4 | chscl.4 | ⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ) | |
| 5 | chscl.5 | ⊢ ( 𝜑 → 𝐻 ⇝𝑣 𝑢 ) | |
| 6 | chscl.6 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ) | |
| 7 | chscllem3.7 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 8 | chscllem3.8 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | |
| 9 | chscllem3.9 | ⊢ ( 𝜑 → 𝐷 ∈ 𝐵 ) | |
| 10 | chscllem3.10 | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝑁 ) = ( 𝐶 +ℎ 𝐷 ) ) | |
| 11 | 2fveq3 | ⊢ ( 𝑛 = 𝑁 → ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) = ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) | |
| 12 | fvex | ⊢ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ∈ V | |
| 13 | 11 6 12 | fvmpt | ⊢ ( 𝑁 ∈ ℕ → ( 𝐹 ‘ 𝑁 ) = ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) |
| 14 | 7 13 | syl | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) = ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) |
| 15 | 14 | eqcomd | ⊢ ( 𝜑 → ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = ( 𝐹 ‘ 𝑁 ) ) |
| 16 | chsh | ⊢ ( 𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) | |
| 17 | 2 16 | syl | ⊢ ( 𝜑 → 𝐵 ∈ Sℋ ) |
| 18 | chsh | ⊢ ( 𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
| 19 | 1 18 | syl | ⊢ ( 𝜑 → 𝐴 ∈ Sℋ ) |
| 20 | shocsh | ⊢ ( 𝐴 ∈ Sℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) | |
| 21 | 19 20 | syl | ⊢ ( 𝜑 → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |
| 22 | shless | ⊢ ( ( ( 𝐵 ∈ Sℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) ∧ 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) → ( 𝐵 +ℋ 𝐴 ) ⊆ ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) | |
| 23 | 17 21 19 3 22 | syl31anc | ⊢ ( 𝜑 → ( 𝐵 +ℋ 𝐴 ) ⊆ ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) |
| 24 | shscom | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) | |
| 25 | 19 17 24 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) |
| 26 | shscom | ⊢ ( ( 𝐴 ∈ Sℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) → ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) | |
| 27 | 19 21 26 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) |
| 28 | 23 25 27 | 3sstr4d | ⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) |
| 29 | 4 7 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝑁 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
| 30 | 28 29 | sseldd | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝑁 ) ∈ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) |
| 31 | pjpreeq | ⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐻 ‘ 𝑁 ) ∈ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) → ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = ( 𝐹 ‘ 𝑁 ) ↔ ( ( 𝐹 ‘ 𝑁 ) ∈ 𝐴 ∧ ∃ 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) ) | |
| 32 | 1 30 31 | syl2anc | ⊢ ( 𝜑 → ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = ( 𝐹 ‘ 𝑁 ) ↔ ( ( 𝐹 ‘ 𝑁 ) ∈ 𝐴 ∧ ∃ 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) ) |
| 33 | 15 32 | mpbid | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑁 ) ∈ 𝐴 ∧ ∃ 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) |
| 34 | 33 | simprd | ⊢ ( 𝜑 → ∃ 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) |
| 35 | 19 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → 𝐴 ∈ Sℋ ) |
| 36 | 21 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |
| 37 | ocin | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) | |
| 38 | 19 37 | syl | ⊢ ( 𝜑 → ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) |
| 39 | 38 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) |
| 40 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → 𝐶 ∈ 𝐴 ) |
| 41 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) |
| 42 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → 𝐷 ∈ 𝐵 ) |
| 43 | 41 42 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → 𝐷 ∈ ( ⊥ ‘ 𝐴 ) ) |
| 44 | 1 2 3 4 5 6 | chscllem1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝐴 ) |
| 45 | 44 7 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ 𝐴 ) |
| 46 | 45 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → ( 𝐹 ‘ 𝑁 ) ∈ 𝐴 ) |
| 47 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ) | |
| 48 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → ( 𝐻 ‘ 𝑁 ) = ( 𝐶 +ℎ 𝐷 ) ) |
| 49 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) | |
| 50 | 48 49 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → ( 𝐶 +ℎ 𝐷 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) |
| 51 | 35 36 39 40 43 46 47 50 | shuni | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → ( 𝐶 = ( 𝐹 ‘ 𝑁 ) ∧ 𝐷 = 𝑧 ) ) |
| 52 | 51 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) +ℎ 𝑧 ) ) ) → 𝐶 = ( 𝐹 ‘ 𝑁 ) ) |
| 53 | 34 52 | rexlimddv | ⊢ ( 𝜑 → 𝐶 = ( 𝐹 ‘ 𝑁 ) ) |