This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for chscl . (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chscl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Cℋ ) | |
| chscl.2 | ⊢ ( 𝜑 → 𝐵 ∈ Cℋ ) | ||
| chscl.3 | ⊢ ( 𝜑 → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) | ||
| chscl.4 | ⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ) | ||
| chscl.5 | ⊢ ( 𝜑 → 𝐻 ⇝𝑣 𝑢 ) | ||
| chscl.6 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ) | ||
| Assertion | chscllem1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chscl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Cℋ ) | |
| 2 | chscl.2 | ⊢ ( 𝜑 → 𝐵 ∈ Cℋ ) | |
| 3 | chscl.3 | ⊢ ( 𝜑 → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) | |
| 4 | chscl.4 | ⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ) | |
| 5 | chscl.5 | ⊢ ( 𝜑 → 𝐻 ⇝𝑣 𝑢 ) | |
| 6 | chscl.6 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ) | |
| 7 | eqid | ⊢ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) = ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) | |
| 8 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ Cℋ ) |
| 9 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐻 ‘ 𝑛 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
| 10 | chsh | ⊢ ( 𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) | |
| 11 | 2 10 | syl | ⊢ ( 𝜑 → 𝐵 ∈ Sℋ ) |
| 12 | chsh | ⊢ ( 𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
| 13 | 1 12 | syl | ⊢ ( 𝜑 → 𝐴 ∈ Sℋ ) |
| 14 | shocsh | ⊢ ( 𝐴 ∈ Sℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |
| 16 | shless | ⊢ ( ( ( 𝐵 ∈ Sℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) ∧ 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) → ( 𝐵 +ℋ 𝐴 ) ⊆ ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) | |
| 17 | 11 15 13 3 16 | syl31anc | ⊢ ( 𝜑 → ( 𝐵 +ℋ 𝐴 ) ⊆ ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) |
| 18 | shscom | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) | |
| 19 | 13 11 18 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) |
| 20 | shscom | ⊢ ( ( 𝐴 ∈ Sℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) → ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) | |
| 21 | 13 15 20 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) +ℋ 𝐴 ) ) |
| 22 | 17 19 21 | 3sstr4d | ⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) |
| 23 | 22 | sselda | ⊢ ( ( 𝜑 ∧ ( 𝐻 ‘ 𝑛 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) → ( 𝐻 ‘ 𝑛 ) ∈ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) |
| 24 | 9 23 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐻 ‘ 𝑛 ) ∈ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) |
| 25 | pjpreeq | ⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐻 ‘ 𝑛 ) ∈ ( 𝐴 +ℋ ( ⊥ ‘ 𝐴 ) ) ) → ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) = ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ↔ ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ∈ 𝐴 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑛 ) = ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) +ℎ 𝑥 ) ) ) ) | |
| 26 | 8 24 25 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) = ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ↔ ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ∈ 𝐴 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑛 ) = ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) +ℎ 𝑥 ) ) ) ) |
| 27 | 7 26 | mpbii | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ∈ 𝐴 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝐻 ‘ 𝑛 ) = ( ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) +ℎ 𝑥 ) ) ) |
| 28 | 27 | simpld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( projℎ ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝑛 ) ) ∈ 𝐴 ) |
| 29 | 28 6 | fmptd | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝐴 ) |