This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for subspace sum. (Contributed by NM, 15-Dec-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shscom | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shel | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℋ ) | |
| 2 | shel | ⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ℋ ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) |
| 4 | 3 | an4s | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) |
| 5 | ax-hvcom | ⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 +ℎ 𝑧 ) = ( 𝑧 +ℎ 𝑦 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 +ℎ 𝑧 ) = ( 𝑧 +ℎ 𝑦 ) ) |
| 7 | 6 | eqeq2d | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) |
| 8 | 7 | 2rexbidva | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) |
| 9 | rexcom | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑧 +ℎ 𝑦 ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) | |
| 10 | 8 9 | bitrdi | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) |
| 11 | shsel | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) | |
| 12 | shsel | ⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) → ( 𝑥 ∈ ( 𝐵 +ℋ 𝐴 ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) | |
| 13 | 12 | ancoms | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝑥 ∈ ( 𝐵 +ℋ 𝐴 ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) |
| 14 | 10 11 13 | 3bitr4d | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ 𝑥 ∈ ( 𝐵 +ℋ 𝐴 ) ) ) |
| 15 | 14 | eqrdv | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) |